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Abstract 

Pattern separation is a computational mechanism performed by the hippocampus allowing the reduction 

of overlap between sensory inputs with similar perceptual features. Our first aim was to develop a new 

paradigm sensitive to the behavioural consequences of pattern separation (mnemonic discrimination). 

For this purpose, we constructed morphed face stimuli with parametrically changing levels of similarity. 

After encoding participants saw studied items and similar lure faces. Perceptual similarity affected false 

recognition and there was a gradual reduction in discrimination accuracy with the increment of similarity 

between the stimuli. However, confidence ratings were sensitive to smaller changes (Experiment 1) than 

the other test type with “old”/”similar”/”new” response options (Experiment 2). Mnemonic 

discrimination relies strongly on retrieving details of the original stimulus. Therefore, we investigated 

whether pattern separation can be tuned by retrieval in the form of a discrimination task (Experiment 3). 

Our findings suggest that repeatedly encountering the stimuli within a two-alternative forced-choice task 

(in comparison with the repeated presentation of the material) increased both the correct identification 

and the false recognition of similar stimuli two days after encoding. We conclude that basic 

computational mechanisms of the hippocampus can be tuned by a task that requires discrimination 

between studied and new stimuli.   

 

Keywords: Pattern separation; Mnemonic discrimination; False memory; Retrieval; Recognition 

memory 
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Introduction 

 

Tools for Assessing the Behavioral Consequences of Hippocampal Pattern Separation 

One crucial feature of human memory is the ability to encode and store events in the form of 

distinct, episodic memory representations (Tulving, 1972, 2002). This ability requires the resolution of 

interference between overlapping representations, and strongly depends on a computational mechanism 

in the hippocampus, called pattern separation, that allows the reduction of overlap among sensory inputs 

that share similar features (for reviews, see Hunsaker & Kesner, 2013; Rolls, 2013; Yassa & Stark, 

2011). As a consequence of pattern separation, neuronal activities of brain circuits become distinct in 

response to different but still similar stimuli (Bakker, Kirwan, Miller, & Stark, 2008; Gilbert & Kesner, 

2006; Hunsaker & Kesner, 2013). At a behavioral level, as a result of pattern separation, one becomes 

able to correctly identify and reject a stimulus that is only similar to (but not the same as) a previously 

perceived item (see Kirwan & Stark, 2007; Stark, Kirwan, & Stark, 2019). 

The Mnemonic Similarity Task (MST) is a modified recognition memory task that places strong 

demands on mnemonic discrimination between similar items, which is the reason why it is a frequently 

used tool to assess the behavioral consequences of pattern separation in humans (for a recent overview, 

see Stark et al., 2019). In this task, images are shown to the participants in an incidental learning situation 

and later memory is tested in the form of a recognition memory task. Following the tradition of 

recognition memory research, participants are presented with old target items (stimuli encountered at 

encoding) and completely new foils. As a modification, half of the target stimuli are not presented on 

the recognition test. Instead, critical lure items are shown that are visually similar images to ones 

presented at encoding.  

In the original version of the MST, participants have three response options: “old”, “new”, and 

“similar”. The principal idea is that the correct identification of a lure indicates successful pattern 

separation, as can be measured by the so-called Lure Discrimination Index, i.e., the ratio of “similar” 

responses given to the lures (minus the ratio of “similar” responses given to the foils, when response 

bias is controlled for). Since this Lure Discrimination Index seems to be sensitive to hippocampal 

integrity (rather than a standard recognition hit rate, i.e., the correct identification of a target item), the 
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MST has become a benchmark test to assess hippocampal dysfunctions in normal and pathological 

ageing (Stark & Stark, 2017; Stark, Stevenson, Wu, Rutledge, & Stark, 2015; Stark, Yassa, Lacy, & 

Stark, 2013; Yassa, Lacy, Stark, Albert, Gallagher, & Stark, 2011) as well as in various neurological 

disorders (Planche, Ruet, Charre-Morin, Deloire, Brochet, & Tourdias, 2017; Poch, Toledano, Garcia-

Morales, Prieto, Garcia-Barragan, Aledo-Serrano, Gil-Nagel, & Campo, 2020; Wesnes & Burn, 2013). 

The MST has been adopted in many variants, using a diverse assortment of stimuli. The most 

widespread version of the MST is performed using everyday objects, manipulating the similarity 

between targets and lures across a wide range of characteristics, such as the color, size, and shape of the 

objects, just to name a few (Stark et al., 2019). The similarity level of the lures in this version is not 

determined by changing the physical parameters of the images, but by the rates of false alarm judgements 

given to the specific lures on a memory test performed by an independent group of participants (Lacy, 

Yassa, Stark, Muftuler, & Stark, 2011). Nevertheless, there have been studies using the MST with 

parametric changes in the perceptual features of the stimuli to create different levels of similarity in 

lures. One of the most common manipulations used in such experiments is changing the degree of 

rotation of the lures compared to the original stimuli (Motley & Kirwan, 2012). However, restricting the 

manipulation of similarity to one type of feature is suggested to allow participants to employ specific 

strategies for identifying lures or to give short verbal labels to the stimuli (e.g., “red car, 45 degrees”) 

(see Stark et al, 2019). 

As a further example, for studies designed to investigate behavioral pattern separation faces are 

a type of stimuli especially suited to create lures. For example, Kirwan and Stark (2007) used 

photographs of faces, changing their various properties between targets and lures (e.g., expression, 

clothes, lighting), whereas in another study Chang, Murray, and Yassa (2015) used morphed faces with 

parametrically changing similarity levels. Faces can be characterized by consistent primary features (the 

positions of eyes, nose, and mouth are fairly constant), and therefore, it is relatively easy to construct 

stimuli with the perceptual similarity held under control by morphing faces into each other. 

Remembering faces is suggested to be a nonverbal activity and most of the time faces can be described 

only in vague terms (Ellis, Shepherd, & Davies, 1980; Lindsay, Martin, & Webber, 1994). Actually, in 

certain cases, verbalization of facial images can impair their visual recognition (known as verbal 
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overshadowing, see e.g., Dodson, Johnson, & Schooler, 1997; Meissner & Brigham, 2001), indicating 

that verbal labels would not aid the discrimination of similar faces. For this reason, experimental designs 

using facial stimuli in the MST could reduce the inter-individual variability in verbalization strategies 

compared to object stimuli.  

 

The Role of Retrieval in Lure Discrimination and in Long-Term Memory Retention 

Strongly related to hippocampal pattern separation and its behavioral manifestation (lure 

discrimination), current models of recognition memory stress the crucial role of memory retrieval in the 

proper discrimination of highly similar stimuli. These models propose that a so-called recall-to-reject 

process is acting during the correct rejection of a new item that is similar to an old target item (see Clark 

& Gronlund, 1996; Rotello & Heit, 1999; Rotello, Macmillan, & Van Tassel, 2000). In other words, 

when there is an overlap between the features of an old and a new item, one must retrieve the original 

stimulus to detect differences between them. Accordingly, computational models of the hippocampal 

formation also suggest that for the correct discrimination between targets and highly similar lures 

individuals tend to use the recall-to-reject strategy (Norman & O’Reilly, 2003). Many MST studies 

propose that when giving a “similar” response to a lure, participants might first retrieve the associated 

target to correctly reject the lure (e.g., Kim & Yassa, 2013; Kirwan & Stark, 2007; Yassa, Lacy, Stark, 

Albert, Gallagher & Stark, 2011). That is to say, these ideas all emphasize the important role of memory 

retrieval in successful lure discrimination and in pattern separation (see also Kirwan & Stark, 2007). 

Based on this concept, one could raise the question whether retrieval processes known to affect memory 

retention are able to change the functioning of pattern separation and its behavioral manifestation.  

Another line of research long established that practicing the material via retrieval promotes 

subsequent memory performance even more than additional study opportunities do (Putnam, Nestojko, 

& Roediger, 2016; Roediger & Butler, 2011; Roediger & Karpicke, 2006). In addition to its facilitative 

effect on memory retention, retrieval reduces interference effects when the study material includes 

stimuli that share similar features (Racsmány & Keresztes, 2015; Szpunar, McDermott, & Roediger, 

2008).   
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The majority of studies investigating the beneficial impact of retrieval reported a facilitating 

effect on memory in tasks measuring recall performance (e.g., Karpicke & Roediger, 2008; Wheeler, 

Ewers, & Buonanno, 2003). The effects of retrieval on recognition memory performance have been 

investigated by fewer studies compared to recall, and at first glance, their findings present a somewhat 

less conclusive picture (see the meta-analytic review of Rowland, 2014). Nevertheless, several studies 

found that retrieval benefits recognition memory performance (e.g., Chan & McDermott, 2007; Read, 

1979; Verde, 2004; but see Lockhart, 1975; McDaniel, Anderson, Derbish, & Morrisette, 2007). Chan 

and McDermott (2007) proposed that although the effect of retrieval is not always apparent in classic 

recognition memory performance, it can change the processes underlying recognition decisions. The 

authors found that source memory performance, performance in an exclusion memory task as well as in 

a Remember/Know task increased following retrieval practice even when recognition hit rates were 

unaffected. They concluded that retrieval mainly affects recognition decisions when the task requires 

the retrieval of specific details associated with the encoding episode, which is not always reflected in 

standard recognition hit rates. This view has been supported by later studies as well (e.g., Guran, 

Lehmann-Grube, & Bunzeck, 2019; Verkoeijen, Tabbers, & Verhage, 2011; but see Shaffer & 

McDermott, 2020). 

In sum, based on the empirical findings described above, one can assume that there is a strong 

interplay between pattern separation, memory retrieval, and memory retention. First, retrieval is known 

to lead to a reduction in interference effects (Racsmány & Keresztes, 2015; Szpunar et al., 2008). 

Relatedly, hippocampal pattern separation refers to the process of interference resolution at a 

computational level. Additionally, retrieval promotes later recognition memory when the task requires 

the retrieval of specific details of a memory representation (Chan & McDermott, 2007; Guran et al., 

2020; Verkoeijen et al., 2011). Accordingly, for successful pattern separation and lure discrimination, 

the formation of detailed memory representations is needed, as one needs to compare the details of a 

previously seen item and a visually similar lure (see Kirwan & Stark, 2007). Based on this set of ideas 

and empirical findings, it can be assumed that pattern separation (as a process that requires access to 

specific details associated with the target information) can be tuned by retrieval, leading to an increase 

in lure discrimination performance at a behavioral level.  
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Study Objectives 

To investigate whether pattern separation can be tuned by repeatedly re-encountering the 

material in a recognition memory task involving discrimination, we developed an experimental 

paradigm to examine the behavioral manifestation of pattern separation using lure stimuli with similarity 

levels manifested in the overlap of physical features between target and lure stimuli, manipulated in a 

parametric manner. Facial stimuli were chosen because unfamiliar faces are difficult to label verbally 

(Ellis et al., 1980; Lindsay et al., 1994). Additionally, due to their consistent configuration of primary 

features lure faces are easy to generate with various levels of perceptual overlap. Parametrically changed 

faces have been successfully used in one previous MST study to investigate pattern separation. Chang 

and colleagues (2015) examined a face recognition specific phenomenon, the other race effect, in 

relation to pattern separation performance. For the aforementioned reasons, we created lure facial stimuli 

overlapping with the original face by morphing two unique faces.  

 Our experimental design incorporates several methodological features used by previous MST 

studies. In designing and testing our paradigm we combined and compared several of these features: 

different types of encoding and recognition tasks, multiple levels of lure similarity. In the first two of 

three experiments we used the generated stimuli first in a task widely used in the recognition memory 

literature to measure discrimination (Egan, 1958) and then in the most popular version of the MST, 

which is predominantly used in neuroimaging studies (Stark et al., 2019). Consequently, in Experiment 

1, we tested lure discrimination in a task where participants made recognition confidence judgements 

on a scale ranging between “Sure it was new” and “Sure it was old”. Then, in Experiment 2, we assessed 

the behavioral correlates of pattern separation in a task using “old”/”similar”/”new” response options. 

In brief, the main purpose of the first two experiments was to develop a task that pertains with facial 

stimuli and is sensitive to lure discrimination performance when memory performance is assessed by 

recognition confidence ratings (widely used in the experimental psychological literature) and by the 

ratio of “old”, “similar” and “new” decisions (widely used in the neuroimaging literature). Except for 

this difference in the types of the recognition memory test, all other experimental conditions were the 

same in Experiment 1 and 2.  
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In Experiment 3, we used the design developed in the first two experiments to examine whether 

pattern separation can be tuned by retrieval in the form of a discrimination task. We included a practice 

phase after initial encoding where participants practiced discriminating the original faces from novel 

faces in a two-alternative forced-choice recognition memory task. The effect of discrimination tuning 

on pattern separation was assessed later in a recognition task with “old”/”similar”/”new” response 

options.  

 

Experiment 1 

The aim of the first experiment was to develop a paradigm that allows the investigation of lure 

discrimination for facial stimuli. We created a set of stimuli where similarity was manipulated 

parametrically on a continuum of overlapping features between the original (target) and a new face by 

morphing. To create lure faces with different degrees of overlap to the original ones, we used a morphing 

continuum in steps of 25%, generating lures that were 25%, 50%, and 75% dissimilar to the original 

face. Discriminations between previously seen target faces, partially overlapping lures, and completely 

new foils were measured in a recognition memory task at the final stage.  

We aimed to create an experimental design where lure discrimination relies more heavily on the 

detailed recollection of the original stimulus, requiring the participants to employ the recall-to-reject 

strategy. Some studies propose that participants tend to use the recall-to-reject strategy for successful 

lure discrimination in the traditional form of the MST (e.g., Kirwan & Stark, 2007), however, some 

recent findings suggest that the feeling of familiarity also contributes to lure discrimination performance 

(Kim & Yassa, 2013; Szőllősi, Bencze, & Racsmány, 2020). Other studies examined lure discrimination 

in a recognition task involving multiple similar lures presented together with their corresponding target 

item in the same task (see: Holdstock, Mayes, Roberts, Cezayirli, Isaac, O'Reilly, & Norman, 2002). 

Holdstock and colleagues (2002) found that lure discrimination in a yes/no recognition task was 

impaired in a patient with selective hippocampal damage, and it was reported that healthy individuals 

mainly use recall-to-reject strategy in the same task (Migo, Montaldi, Norman, Quamme, & Mayes, 

2009). For this reason, we measured lure discrimination performance in a recognition task where beside 

each target face (faces encountered in the encoding phase) all versions of its corresponding morphed 
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lures were presented along with morphed and unmorphed foils. This modification in the experimental 

design was implemented for the purpose of increasing demand for using the recall-to-reject strategy 

instead of relying on the sense of familiarity for lure discrimination. Encountering multiple versions of 

the same item during the recognition task would discourage participants from deciding based on 

familiarity, since an item could feel familiar from either the encoding phase, or from encountering some 

morphed version of it in the recognition task. 

In recognition memory studies one way to examine recognition memory performance is the 

analysis of receiver operating characteristics (ROC) (Egan, 1958). The ROC curve is a plot of hits (“old” 

responses given to the old items) against false alarms (incorrect “old” responses given to the new items). 

When only “old” and “new” response options are used in a recognition memory task, response criterion 

can be manipulated experimentally (Hockley, 2011; see also Stretch & Wixted, 1998). Another way is 

when participants are instructed to make a recognition confidence judgment on a scale. In this latter 

case, each level reflects a response criterion and no intervention is needed to experimentally manipulate 

the response criteria (for an overview, see Weidemann & Kahana, 2016). Relatedly, a couple of recent 

studies also combined the MST with confidence ratings (e.g., Loiotile & Courtney, 2015; Stark et al., 

2015; Szőllősi et al., 2020). In these studies, the signal detection framework has been used together with 

traditional MST scores and/or tasks. The main advantage of the signal detection approach in pattern 

separation research is that the various memory discrimination scores derived from the ROC analysis 

yield information about the overlap between the representation of the two measured stimulus types, e.g., 

the overlap between target and lure representations (see Loiotile & Courtney, 2015). These studies used 

ROC analysis with the stimulus set of the traditional MST, while in the present study we aimed to expand 

this line of research by using parametrically changed stimuli from the same semantic category (faces). 

Due to these multiple reasons, we asked participants to make recognition confidence judgments. 

Specifically, participants were asked to make a decision confidence judgment on a 6-point scale ranging 

between “Sure it was new” and “Sure it was old”.  

An additional matter of design that differs between typical recognition memory paradigms and 

tasks designed to assess behavioral pattern separation is the instructions in the encoding phase. The 

behavioral manifestation of putative neural mechanisms enabling pattern separation is often assessed by 
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recognition memory tasks following incidental encoding (see Stark et al., 2019). However, in both the 

recognition memory literature and studies investigating the effect of retrieval on later memory, 

performance is often measured following intentional learning (e.g., Chan & McDermott, 2007; Verde, 

2004). There has been a long line of research that investigated the effect of encoding type 

(incidental/intentional) on recognition performance. The results presented by the studies of this subject 

are varied: some authors report the advantage of intentional encoding (e.g., Block, 2009; Noldy, 

Stelmack, & Campbell, 1990), other findings show better memory performance following incidental 

encoding (e.g., Bernstein, Beig, Siegenthaler, & Grady, 2002; Choe, Kardan, Kotabe, Henderson, & 

Berman, 2017), and there are studies observing no difference between the two encoding types (e.g., 

Bird, 1976; Ferrara, Puff, Gioia, & Richards, 1978). However, to the best of our knowledge, there has 

only been one study examining the impact of encoding type on lure discrimination performance (Stark, 

Stevenson, Wu, Rutledge & Stark, 2015), and none using a signal detection approach. Stark and 

colleagues found no difference in lure discrimination between incidental and intentional encoding, 

although they did not account for different levels of similarity in lures. Therefore, we aimed to expand 

this line of research by exploring the effects of encoding on lure discrimination in case of varying levels 

of similarity without strong a priori predictions. In our experiment, half of the participants studied the 

material in an incidental encoding situation, while the remaining participants were explicitly instructed 

to study the material.  

 

Materials and Methods 

 

Participants 

In all three experiments participants were Hungarian undergraduate students and received 

course credit for participation. All participants were Caucasian. No participant had a history of 

psychiatric and neurological disorders and they all had normal or corrected-to-normal vision. All 

participants gave written informed consent. The study was approved by the Hungarian United Ethical 

Review Committee for Research in Psychology and was carried out in accordance with the Code of 

Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans. 
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The sample size of the groups in both Experiment 1 and 2 was based on previous MST studies (Kirwan 

& Stark, 2007; Loiotile & Courtney, 2015; Motley & Kirwan, 2012; Stark, Stevenson, Wu, Rutledge, 

& Stark, 2015). 

There were 38 participants in Experiment 1 (6 men; age range: 19-26 years). Participants were 

randomly assigned to either the incidental encoding group (N = 19, 4 men; age range: 19-24 years) or to 

the intentional encoding group (N = 19, 2 men; age range: 19-26 years). No participant was excluded 

from the sample. 

 

Stimuli 

For stimuli exemplars, see Figure 1a. In all three experiments we used greyscale images of faces 

as stimuli. We used Caucasian, young adult male faces since findings of previous studies indicate that 

participants show a comparable recognition memory performance for male faces regardless of the 

subjects’ gender, while female faces are remembered less by male participants (Lewin & Herlitz, 2002). 

The faces were presented from a front view with the hair, ears, and shape of the face masked, and without 

any facial hair or other salient characteristics (e.g., glasses). The stimuli were obtained from freely 

available online databases (DeBruine & Jones, 2017; Minear & Park, 2004).  

Four stimulus types were used in the recognition memory task: (1) targets (original faces that 

were presented at encoding), (2) lures (morphed faces), (3) morphed foils (new faces that were used 

during the morphing process but were not presented at encoding), and (4) unmorphed foils (new faces 

that were not used during the morphing process and were not presented at encoding). Morphed face 

stimuli were created by using the photo morphing software Abrosoft FantaMorph 5.3.8 (Abrosoft Co.) 

to generate morphs between two unique faces along a continuum in steps of 25% (25%, 50%, and 75% 

morphs). We aimed to encompass the whole morphing continuum from 0% to 100% (here, 0% refers to 

the target items, whereas 100% refers to the foils). Therefore, we used a morphing step of 25%, 

generating lures that were 25%, 50%, and 75% dissimilar to the original face stimuli that were presented 

at encoding. We use the terms “25% morph”, “50% morph”, and “75% morph” to indicate that the lure 

contains features of a face that is different from the original face in 25%, 50%, and 75% proportions, 

respectively. Consequently, a 25% morphed lure resembles the original face greatly, a 50% or 75% 
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morphed lure less so. In this continuum of similarity target stimuli could be placed at the 0% point of 

the spectrum with morphed foils being the 100% point, sharing no features with the targets. Unmorphed 

foils are completely outside of this continuum. We used the morphed lures in the recognition task, along 

with the two types of foil faces. Morphed foils are faces that were not presented previously, but were 

used in the morphing process, and thus share visual features with some of the morphed lures. Unmorphed 

foils are faces not used in the morphing process and consequently they do not share features with any of 

the other types of stimuli.  

On the recognition test an equal number of each stimulus type was presented. Even though this 

design feature resulted in a lower number of targets compared to the traditional MST, we did not describe 

the rate of stimulus types in the task instructions. Based on previous findings it is unlikely that without 

making the participants aware of the distribution of the stimulus types this manipulation would cause 

them to shift their criterion resulting in response bias (see e.g., Estes & Maddox, 1995; Franks & Hicks, 

2016, Koop, Criss & Malmberg, 2015; for previous MST studies using a different distribution of stimuli 

from the traditional design see: Chang et al., 2015; Motley and Kirwan, 2012). 

In the recognition task phase each target face (faces encountered in the encoding phase) had its 

original version as well as each type of its morphed versions presented along with morphed and 

unmorphed foils. Presenting each version of the stimuli was a modification added to decrease the 

probability of participants relying on familiarity when making decisions about lure items. We used two 

types of foils in the recognition task (morphed and unmorphed foils). Since morphed foils share visual 

features with some of the morphs, there is a possibility that they could evoke some sense of familiarity; 

while unmorphed foils do not share any features with the other stimulus types, not evoking the same 

feeling of familiarity.  In all three experiments the faces were presented on a grey background at the size 

of 8.6° x 8.6° visual angles. 

 

(Figure 1 about here) 

 

Experimental Design and Procedure 
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Experiment 1 consisted of two phases separated by a 5-minute delay: an encoding phase and a 

recognition memory task. The experimental procedure is illustrated in Figure 1b. 

During the encoding phase participants saw 20 images of faces in random order for three 

consecutive cycles, with all faces being presented in each cycle. There was no delay between the 

encoding cycles. The faces were presented in the middle of the computer screen for 7000 ms each with 

a pre-stimulus interval (PSI) of 1000 ms. Participants in the intentional encoding condition were 

instructed to memorize the faces. Participants in the incidental encoding condition made a 

pleasant/unpleasant decision of the presented faces (for the previous application of this instruction type, 

see e.g., Burgess & Gruzelier, 1997) using the mouse of the computer to click on the chosen option. 

Responses were given with a computer mouse instead of a keyboard in order to avoid the confounding 

effect of motor learning across encoding conditions. Response options (“Unpleasant”, “Rather 

unpleasant”, “Rather pleasant”, and “Pleasant”) remained written on the bottom of the computer screen 

for the duration of each encoding cycle. The instructions were presented at the beginning of each cycle, 

and participants could start the task by pressing the Space bar.  

The encoding phase was followed by a 5-minute delay. In the first three minutes of the delay 

participants were given an arithmetic distractor task when they solved a list of exercises on paper without 

using a calculator. The aim for the distractor task was to prevent rote rehearsal. Following the arithmetic 

distractor task, there was a short, 2-minute response practice phase where participants were presented 

with the labels of the confidence scale (e.g., “It is probably new”) and were asked to press the 

corresponding response button on a standard keyboard of the computer (“X” in this example). The labels 

were presented in random order during the response practice phase with each label remaining on the 

screen for 5000 ms (with a PSI of 1000 ms).  

In the recognition task, participants saw 124 images of faces in the middle of the computer 

screen. Twenty images were targets, i.e., exact repetitions of the faces presented during the encoding 

phase. Sixty images were morphed lure faces, 20 of each type of morph (25%, 50%, 75% morphed). 

Each face from the encoding phase and each type of its morphed versions were presented during the 

recognition task. Twenty images were foils that were used in the morphing process (morphed foils) and 

twenty images were unmorphed foils. The first four images presented in the memory task were fillers 
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that were not used in the experiment previously, in order to avoid the effects of primacy. Responses 

given to the fillers were not analyzed.  

The faces were presented in a random order (with the exception of the fillers) and each face 

remained on the screen for 5000 ms preceded by a 1000-ms PSI. Participants were asked to make a 

recognition confidence judgement on a 6-point scale. The corresponding keys were the “Y”, “X”, “C”, 

“B”, “N”, and “M” keys on a QWERTZ keyboard, where Y = “Sure it was new”, M = “Sure it was old”. 

The response labels of the confidence scale remained on the screen for the duration of the recognition 

task. Stimulus presentation was controlled by Psychtoolbox 3.0.12 (Brainard, 1997), a set of MATLAB 

(version 2014a, The MathWorks, Inc., Natick, Massachusetts, US) and GNU Octave (GNU General 

Public License; Eaton, Bateman, Hauberg, & Wehbring, 2018) functions. 

 

Data Analysis  

To investigate the discrimination of target items from each type of morphed lures and foils, we 

conducted ROC analyses using the ROC Toolbox (The Regents of the University of California, Oakland, 

California, US) developed in the MATLAB computing environment (R2018a, The MathWorks, Inc., 

Natick, Massachusetts, US) by Koen, Barrett, Harlow, and Yonelinas (2017). Separate ROC curves were 

generated by plotting confidence ratings given to the target faces against false alarm rates for each type 

of lures (incorrect “old” responses given to either 25%, 50%, or 75% morphed lures) and against foil 

faces (incorrect “old” responses given to the morphed or unmorphed foils). ROC curves were fitted to 

the data of each participant individually.  

We aimed to assess the accuracy of the discrimination between targets and lures and the 

discrimination between targets and foils without using any model-specific assumptions. Several 

measures have spread in the recognition memory literature, however, these indices all depend on 

assumptions of the underlying distributions. One important advantage of analyzing ROC curves is that 

it provides an opportunity to calculate a reliable measure of performance (sensitivity) without any model 

assumption (an index called the Area Under the Curve, AUC; Green & Moses, 1966; Macmillan & 

Creelman, 2005; Pollack & Hsieh, 1969; Pollack & Norman, 1964; Verde, Macmillan, & Rotello, 2006). 

The AUC has been used in previous studies combining the MST with the signal detection approach as 
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well (Loiotile & Courtney, 2015; Szőllősi et al., 2020). For the purpose of measuring lure discrimination, 

Loiotile and Courtney (2015) suggest the AUC as a memory discrimination measure in case one would 

not want to make assumption about the underlying distributions of recognition strength, and reported 

comparable results using this measure to their analysis on the same data using da (a more frequently 

used discrimination measure of signal detection theory, that assumes normal distribution). Therefore, 

we used the AUC as a measure of discrimination accuracy between targets and morphed lures as well as 

between targets and foil items.  

We analyzed the effect of encoding type (incidental and intentional) and the type of the stimuli 

that needed to be discriminated from the targets (25%, 50% or 75% morphed lures, morphed foils, and 

unmorphed foils) on the AUC values signifying accuracy of the discrimination. For this purpose, we 

conducted a 2 x 5 (Encoding x Stimulus type) mixed-design ANOVA with the degrees of freedom 

adjusted with Greenhouse-Geisser corrections when appropriate. 

 

Results 

The AUC values are presented in Figure 2. The ANOVA indicated no effect of encoding type 

on the AUC values of the ROC curves. Specifically, there was no significant main effect of Encoding, 

F(1, 36) = 1.576,  p = .217, η2
p = 0.042, and no Encoding x Stimulus type interaction, F(2.69, 96.76) = 

1.261, p = .292, η2
p = 0.034. On the other hand, we found a significant main effect of Stimulus type, 

F(2.69, 96.76) = 334.080, p < .001, η2
p = 0.903.  

Further contrast analyses (using Bonferroni corrections) showed a significant difference in the 

accuracy of all target-morphed lure and target-foil discriminations, with an increased accuracy for item 

types that were more dissimilar to the targets. The AUC was significantly lower for target vs. 25% morph 

than it was for target vs. 50% morph discrimination, F(1, 36) = 114.856, p < .001, η2
p = 0.761. Target 

vs. 50% morph discrimination had lower accuracy than target vs. 75% morph discrimination, F(1, 36) 

= 145.980, p < .001, η2
p = 0.802, and target vs. 75% morph discrimination was less accurate than the 

discrimination of targets from morphed foils, F(1, 36) = 42.181, p < .001, η2
p = 0.539. Target vs. 

morphed foil discrimination had a lower AUC than target vs. unmorphed foil discrimination, F(1, 36) = 

32.234, p < .001, η2
p = 0.472. 
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In sum, the ability to discriminate target items from morphed lures and foils was not affected by 

the type of encoding (incidental or intentional). The accuracy of the discrimination decreased when the 

similarity between targets and lures was higher. The accuracy was the highest when the foil face did not 

share any feature with any of the presented faces.  

 

(Figure 2 about here) 

 

Experiment 2 

The results of Experiment 1 indicated that the paradigm is sensitive to lure discrimination 

performance for facial stimuli as measured in a task that assessed recognition confidence frequencies. 

However, in the behavioral pattern separation literature, participants typically have three response 

options: “old”, “similar”, and “new” (see e.g., Kirwan & Stark, 2007; Stark et al., 2013). In this case, 

the ratio of “similar” responses given to the lure items is the measure of lure discrimination performance. 

Therefore, in our second experiment, participants were not instructed to make confidence judgments (as 

in Experiment 1); instead, they were asked to make an “old”/”similar”/”new” decision. All other 

experimental conditions were the same as they were in Experiment 1.  

 

Materials and Methods 

 

Participants 

In Experiment 2 there were 41 participants (3 men; age range: 19-26 years). They were randomly 

assigned to either the incidental encoding group (N = 20, 1 man; age range: 19-26 years) or to the 

intentional encoding group (N = 21, 2 men; age range: 19-24 years).  

 

Experimental Design and Procedure 

The stimuli and the encoding phases of the experiments were identical in Experiment 1 and 2. 

The experimental procedure is illustrated in Figure 1b. 
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In the following recognition memory task participants saw 164 faces (20 targets; 20 of 25%, 

50%, and 75% morphs; 20 morphed; 20 unmorphed foils and 4 fillers) in the middle of the computer 

screen. In contrast to Experiment 1, instead of a confidence judgement, participants were instructed to 

decide whether they had seen the exact same face before (“old”), or the face was completely new, or the 

face they saw was just similar to a face they had seen during the encoding phase (“similar”). The 

response labels (M = “Old”, V = “Similar”, and Y = “New” on a QWERTZ keyboard) remained on the 

screen for the duration of the recognition task. The faces were presented in a random order (with the 

exception of the fillers) and each face remained on the screen for 5000 ms (PSI = 1000 ms). Similar to 

Experiment 1, the recognition task was preceded by a 5-minute delay, consisting of a 3-minute 

arithmetic distractor task and a 2-minute response practice phase. During the response practice phase 

participants saw the labels of the response options (e.g., “Old”) and were instructed to press the 

corresponding response button (“M” in this example). The labels were presented for 5000 ms with a PSI 

of 1000 ms. 

 

Data analysis 

To investigate whether the type of encoding (incidental and intentional) had an effect on 

recognition performance, we analyzed the recognition score (rate of “old” responses to targets minus 

the rate of “old” responses to unmorphed foils) of the target items in a two-tailed independent-samples 

t-test. For morphed lures, we examined the effect of encoding type and the level of similarity to the 

target face (25%, 50%, and 75% morphed faces) on the lure discrimination scores and false recognition 

scores of morphed lures. Lure discrimination scores for all lure similarity levels were calculated as the 

rate of “similar” responses to lures minus the rate of “similar” responses to unmorphed foils to account 

for the participants’ overall tendency of giving “similar” responses (see e.g., Stark et al., 2013; Yassa et 

al., 2011). False recognition scores were calculated as the rate of “old” responses to lures minus the rate 

of “old” responses to unmorphed foils. We conducted two 2 x 3 mixed-design ANOVAs followed by a 

list of paired contrast analyses of the morphing levels for lure discrimination and false recognition scores 

for the lure items. 
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Results 

For the recognition scores of the target items we found no difference between the incidental (M 

= 68.0%, SE = 4.0) and intentional (M = 73.3%, SE = 3.5) encoding t(39) = 1.006, p = .321, d = 0.314. 

Lure discrimination scores of all lure items are illustrated in Figure 3a. The two encoding 

conditions did not differ in the lure discrimination scores of morphed lure faces. Specifically, neither 

the main effect of Encoding, F(1, 39) = 0.002, p = .963, η2
p < 0.001, nor the Encoding x Similarity 

interaction, F(1.97, 76.93) = 0.247, p = .778, η2
p = 0.006, was significant. However, morphed faces 

showed a significant main effect of Similarity in lure discrimination, F(1.97, 76.93) = 25.888,  p < .001, 

η2
p = 0.399, regardless of the encoding type. Further contrast analysis (using Bonferroni correction to 

account for multiple comparisons) revealed a significantly lower lure discrimination score for 25% 

morphs compared to 50% morphs, F(1, 39) = 45.759, p < .001, η2
p = 0.540. The two weaker morphs 

(50% and 75%) did not differ significantly in regards of lure discrimination performance, F(1, 39) = 

2.411, p = 0.386, η2
p = 0.058.  

False recognition scores of the lure items are illustrated in Figure 3b. False recognition scores 

of morphed lures showed no significant main effect of Encoding, F(1, 39) = 0.696, p = .409, η2
p = 0.018, 

and no Encoding x Similarity interaction, F(1.69, 66.06) = 0.198, p = 0.784, η2
p = 0.005. However, there 

was a significant main effect of Similarity, F(1.69, 66.06) = 212.442, p < .001, η2
p = 0.845. Further 

contrast analysis showed a significant difference between both 25% and 50%, F(1,39) = 170.384, p < 

.001, η2
p = 0.814, as well as between 50% and 75% morphed faces, F(1,39) = 67.596, p < .001, η2

p = 

0.634. 

To summarize, the intentional or incidental nature of encoding did not affect the ability to 

correctly recognize target faces or to correctly label a morphed face as “similar”. There was no effect of 

encoding type on the false recognition of morphed lures either. More importantly, the degree of 

similarity of the morphed lures to the original face affected the responses given to the lures: strong (25%) 

morphs were more likely to be labelled as “old” and less likely as “similar” than weaker (50%) morphs, 

and between weaker morphs, 50% morphs were more likely to labelled as “old” than 75% morphs. In 

sum, while lure discrimination performance did not show a difference between weaker morphs, “old” 

response rates given to the lures differed between each morph condition. This pattern of findings 
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suggests that the lure discrimination index and the false recognition of lures are not the two sides of the 

same coin.   

 

(Figure 3 about here) 

 

Experiment 3 

The results of the first two experiments indicate that the task is sensitive to the discrimination 

of lure faces when participants’ task is to make recognition confidence decisions (Experiment 1) and 

also when there are three response options (Experiment 2). In Experiment 3, we aimed at investigating 

whether lure discrimination performance is sensitive to practice, i.e., when participants had a chance to 

practice discrimination between studied faces and faces they have not encountered before. Since in 

Experiment 1 and 2, the encoding instruction (incidental/intentional) did not affect memory performance 

(either sensitivity or discrimination), in Experiment 3, there was only one group of subjects who studied 

the material in an intentional encoding situation. On the final recognition memory test, there were three 

response options, just as in the second experiment. Mnemonic discrimination is typically assessed 

immediately after the presentation of the study material (e.g., Segal, Stark, Kattan, Stark, & Yassa, 2012; 

Stark, Yassa, Lacy, & Stark, 2013). Similarly, we did not use a long retention interval after the encoding 

phase, just a short delay of five minutes in Experiment 1 and 2. In contrast, the focus of Experiment 3 

was to investigate the effect of retrieval practice on lure discrimination. Previous studies have shown 

that the beneficial effect of retrieval practice on memory retention can only be detected days or even 

weeks after learning (Thompson, Wenger, & Bartling, 1978; Wheeler, Ewers, & Buonanno, 2003). 

Therefore, as a novelty, we used a longer retention interval of two days between learning and the final 

memory test in Experiment 3. 

 

Materials and Methods 

 

Participants 
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There were 41 participants in Experiment 3 (6 men, age range: 20-28 years). No participant was 

excluded from the sample. A sample size equal to the combined two groups of Experiment 2 was chosen 

because in the previous two experiments the effect of lure similarity was calculated using the whole 

sample, and, importantly, it resulted in a sample size similar to previous studies’ investigating the effect 

of retrieval practice on recognition (see e.g., Guran, Lehmann-Grube & Bunzeck, 2019; Verkoeijen, 

Tabbers & Verhage, 2011). 

 

Experimental Design and Procedure  

Experiment 3 included some crucial modifications compared to Experiment 1 and 2. Experiment 

3 consisted of three phases: and encoding phase, a practice phase, and a final recognition memory task. 

The experimental procedure is illustrated in Figure 4. 

In the encoding phase, participants were presented with 16 images of faces in the middle of the 

computer screen for three consecutive cycles. We used a smaller stimulus set size of 16 faces compared 

to the 20 faces in Experiment 1 and 2 to avoid fatigue effect. In each cycle, all faces were presented in 

random order for 5000 ms preceded by a 1000-ms PSI. Before each encoding cycle participants were 

instructed to memorize the faces, and they proceeded to the encoding cycle by pressing the Space bar. 

There was no delay between the encoding cycles. 

The encoding phase was followed by a 5-minute arithmetic distractor task where participants 

solved a list of exercises on paper, without using a calculator. The aim of the distractor task was to 

eliminate the effect of rote rehearsal on memory. 

The following practice phase consisted of five cycles. We included a practice phase with 

multiple memory tests after initial encoding in Experiment 3, because previous studies have shown that 

repeated retrieval practice is more beneficial in terms of long-term memory retention and reduces 

interference effects more effectively than one single retrieval attempt does (Racsmány, Szőllősi & 

Bencze 2018; Racsmány & Keresztes, 2015; Szpunar, McDermott, & Roediger, 2008; Wheeler & 

Roediger, 1992). Faces were randomly assigned into a discrimination or a control practice condition (8-

8 faces, respectively). Each practice cycle included a discrimination practice and a control block in a 

randomly determined order within each cycle. In the control blocks participants were presented with 



21 

 

each of the 8 faces in random order for 5000 ms (PSI = 1000 ms). Before each control block, participants 

were instructed to memorize the faces, and they could proceed to the task by pressing the Space bar.  

The discrimination practice blocks consisted of a two-alternative forced-choice recognition task 

where in each trial participants saw a pair of faces (the practiced face and a new face that was not 

encountered at encoding) presented next to each other. Before each discrimination practice block 

participants were instructed to decide which of the two faces they had seen during the encoding task 

using the keyboard (C = “The left face is old”, M = “The right face is old”). The face pairs were presented 

in a random order and remained on the screen for 5000 ms (PSI = 1000 ms). The stimuli remained on 

the screen even after an answer was presented, to avoid a discrepancy of the presentation time between 

the items within and between the conditions. There was no delay between the practice cycles. 

Following a two-day retention period, participants’ memory for all faces was tested in a 

recognition memory task, while participants were presented with 100 faces in the middle of the computer 

screen. Sixteen images were targets, i.e., exact repetitions of the faces learned during the first session of 

the experiment. There were 16 of each type of morphed lures (25%, 50%, and 75% morphed). Each face 

had its original version as well as each type of its morphed versions presented in the recognition task. 

Sixteen images were morphed foils used in the morphing process and 16 images were unmorphed foils. 

The first four images were fillers. The faces were presented in a random order (with the exception of the 

fillers) and each face remained on the screen for 5000 ms (PSI = 1000 ms). Similar to Experiment 2, 

participants made an “old”/”similar”/”new” decision for each face using the keyboard. The response 

labels (M = “Old”, V = “Similar”, and Y = “New”) remained on the screen for the duration of the 

recognition task. 

 

(Figure 4 about here) 

 

Data analysis 

We investigated the effect of practice strategy on long-term recognition memory performance by 

conducting two-tailed paired-sample t-tests to compare the recognition scores (rate of “old” responses 

to targets minus the rate of “old” responses to unmorphed foils) on the final recognition task between 
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the discrimination practice and control conditions. Additionally, we analyzed the effect of practice 

strategies on the lure discrimination scores (rate of “similar” responses to lures minus the rate of 

“similar” responses to unmorphed foils) and false recognition scores (rate of “old” responses to lures 

minus the rate of “old” responses to unmorphed foils) of different similarity levels of morphed lures on 

the final recognition task. We conducted three 2 x 3 repeated measures ANOVAs followed by contrast 

analyses for the lure discrimination and false recognition scores of lure items. 

 

Results 

In case of the recognition score of the target items we found no difference between the faces 

practiced in the discrimination task (M = 86.4%, SE = 2.3) and control target faces (M = 84.0%, SE = 

2.6), t(40) = 0.840, p = .406, d = 0.155. 

Regarding lure discrimination performance for morphed stimuli (see Figure 5a), we found a 

significant interaction between Practice strategy and Similarity, F(1.97, 78.82)  = 5.175, p = .008, η2
p = 

0.115. Contrast analysis comparing practice strategies on all similarity levels (25%, 50%, 75% morphs) 

using Bonferroni correction showed that while in case of strong (25%) morphs there was no difference 

between the practice strategies, F(1, 40) = 0.276, p = 1.000, η2
p = 0.007), discrimination practice resulted 

in a higher lure discrimination score for both weaker morphs (50% morphs: F(1,40) = 6.816, p = .038, 

η2
p = 0.146; 75% morphs: F(1,40) = 18.904, p < .001, η2

p = 0.321).  

False recognition scores of morphed lures (see Figure 5b) did not show a significant Practice 

strategy x Similarity interaction, F(1.94, 77.76) = 1.143, p = .323, η2
p = 0.028, however, the significant 

main effect of Practice strategy, F(1, 40) = 5.296, p < .027, η2
p = 0.117, indicated a general pattern of 

higher false recognition score for items practiced in the discrimination task. Although, it is difficult to 

draw conclusions on the effect of practice on the 75% morph due to the extremely low false recognition 

rate for this stimulus type (discrimination practice: M = 3.8 %, SE = 1.2, control practice: M = 2.9 %, 

SE = 1.4). There was a significant main effect of Similarity as well, F(1.96, 78.21) = 548.005, p < .001, 

η2
p = 0.932.  

To summarize, testing the material by a two-alternative forced-choice recognition task affected 

long-term discrimination of morphed lure faces that were similar to the practiced items. While correct 
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recognition of the target items was not affected by the practice strategy, discrimination practice resulted 

in a facilitated discrimination performance for morphed lures that were less closely similar to the target 

faces (50% and 75% morphs). Discrimination practice also seemed to have a general effect of increasing 

false recognition for lures. 

 

(Figure 5 about here) 

 

Discussion 

 

Experiment 1 & 2: A New Tool to Assess Mnemonic Discrimination 

Mnemonic discrimination between stimuli that share similar perceptual features is suggested to 

be the behavioral consequence of hippocampal pattern separation (Kirwan & Stark, 2007; Yassa & 

Stark, 2011). The aim of the first two experiments was to develop a paradigm that pertains with facial 

stimuli and is sensitive to mnemonic discrimination performance. For this purpose, we used photographs 

of faces as stimuli with lure stimuli created by morphing unique faces into each other. 

In Experiment 1, we compared the discriminations between different stimulus types (targets vs. 

lures as well as targets vs. foils) by analyzing recognition confidence ratings. According to our results, 

the task is sensitive to lure discrimination performance. More specifically, there was a gradual reduction 

in discrimination accuracy with the increment of perceptual similarity between targets and lures. Based 

on these findings, we can conclude that this test type (when participants are required to make recognition 

confidence decisions) is sensitive to relatively small changes in overlap between the perceptual features 

of the presented images (a target face and its lure differing by 25% vs. 50% vs. 75%). Discrimination 

accuracy was the highest for target-foil discrimination, especially when the foil face did not share 

features with any of the target stimuli. 

Two other methodological aspects of the experimental design should be discussed in details. 

First, we analyzed lure discrimination performance using the AUC (Area Under the Curve) value of a 

ROC analysis as a measure of accuracy. Together with other authors, we suggest to use this index as a 

reliable measure of discrimination accuracy, because its value is not affected by response bias and does 
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not depend on model-specific assumptions (Green & Moses, 1966; Macmillan & Creelman, 2005; 

Pollack & Hsieh, 1969; Pollack & Norman, 1964; Verde et al., 2006). Second, half of the participants 

were instructed to memorize the stimulus set, whereas the remaining participants encountered with the 

encoding phase in an incidental learning situation. In our experiment, lure discrimination performance 

and the discrimination between targets and foils were not affected by the instruction presented before 

encoding. This result is in line with previous findings showing no difference between incidental and 

intentional encoding when the incidental task requires deeper processing in the form of a semantic 

judgement of the stimuli, or the stimuli are relevant to the encoding task (e.g., Bird, 1976; Ferrara, Puff, 

Gioia & Richards, 1978; Varakin, Frye, & Mayfield, 2012), since in our experiment participants made 

pleasantness judgements in the incidental encoding condition. 

In Experiment 2, participants were not required to give confidence ratings. Instead, they 

performed a recognition memory test with “old”, “similar”, and “new” as response options. Lure 

discrimination performance was measured by the ratio of “similar” responses given to the lures (Lure 

Discrimination Index, LDI, as it is often called in the neuroimaging literature; see Stark et al., 2019). 

According to our findings, this test type was sensitive to lure discrimination performance as well. When 

there was a relatively high overlap between the features of targets and lures, the LDI was lower than it 

was for weaker morphs. However, there was no difference in lure discrimination performance between 

weaker morphs (when there was a 50% or a 75% difference in the features of the target face and its 

lure). These latter findings together with the results of the first experiment indicate that lure 

discrimination accuracy calculated on the basis of confidence ratings was sensitive to smaller changes 

in perceptual similarity as compared to the LDI.  

A similar threshold in lure discrimination performance was observed in a study investigating a 

face recognition specific phenomenon, the other race effect, in relation to pattern separation performance 

(Chang et al., 2015). The authors used morphed lure faces that were dissimilar from the original stimuli 

in 30%, 40%, 50% and 60% in a recognition task with “old”/”new” decisions (without confidence 

judgement) to measure the discrimination performance for faces of the same or different ethnicities from 

the participants’. They found that the correct rejection of morphed lures increased with the lures’ 

dissimilarity to the original face. In case where the faces were the same ethnicity as the participant, the 
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lure discrimination performance was more tuned, showing a sharp increase in correct rejection between 

40% and 50% morphed faces, while lure faces of other races showed a more gradual increase in 

discrimination performance.  

It should be highlighted that there are crucial differences between the present experiments and 

the study of Chang et al. Chang and colleagues used synthetic faces as stimuli, the encoding was 

incidental, there were only two response options on the recognition test (“old” and “new”), and lure 

discrimination performance was analyzed on the basis of the rejection of the lure faces. In contrast, 

stimuli were photographs of real faces in our experiment for the purpose to create a more realistic 

experimental situation, we assessed memory performance following incidental and intentional encoding 

to contrast the possible effects of encoding types, and there was an additional “similar” response option 

in the test phase of our experiment. Furthermore, Chang and colleagues used lures that were 30%, 40%, 

50%, and 60% dissimilar to the original faces, whereas we used a wider continuum ranged between 25% 

and 75% morphs. In the recognition test phase Chang and colleagues presented either the target face or 

one version of its morphs, while we presented all versions of the same item in the recognition task order 

to decease the use of familiarity as a strategy to make lure discrimination decisions. Finally, while this 

previous study used no delay between encoding and retrieval, we applied a shorter delay of five minutes 

in Experiment 1 and 2, and we used a longer retention interval of two days in Experiment 3 to examine 

the long-term effect of discrimination practice on memory retention. 

In addition to lure discrimination performance, we analyzed the false recognition of lures as 

well. Small changes in similarity affected the false recognition of lure faces in Experiment 2, as 

measured by the ratio of “old” responses given to the lures. Specifically, there was a gradual increase in 

false alarm rates for the lures with the increment of perceptual similarity between targets and lures (25% 

vs. 50% vs. 75% difference). In fact, “old” response rate for the lure items is often used as a measure of 

pattern completion in the neuroimaging literature (see Stark et al., 2019). Pattern completion refers to 

the process when memories turn into accessible in response to partial/degraded cues (Hunsaker & 

Kesner, 2013; Marr, 1971; Rolls, 2013). This mechanism is associated with generalization that allows 

the extraction of regularities from discrete but similar experiences (Keresztes, Ngo, Lindenberger, 

Werkle-Bergner, & Newcombe, 2018; Shomamy & Wagner, 2008). As it was described in detail 
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previously, memory retrieval plays a key role in pattern separation, since one must retrieve a previously 

perceived stimulus when a lure item is presented to detect differences between them (Clark & Gronlund, 

1996; Norman & O’Reilly, 2003; Rotello & Heit, 1999; Rotello et al., 2000). Accordingly, pattern 

separation and pattern completion are suggested to intimately interact with each other and it has been 

demonstrated that both are associated with specific subregions in the hippocampus. While the dentate 

gyrus and the CA3 subregion of the hippocampus are involved in pattern separation, pattern completion 

mostly depends on the intact functioning of the CA1 area (see Yassa & Stark, 2011). In sum, we can 

conclude, that the paradigm developed and used in Experiment 2 is sensitive to the behavioral correlates 

of both pattern separation and pattern completion. Crucially, this test type with three response options 

was more sensitive to the false recognition of lure items as compared to lure discrimination performance 

as measured by the ratio of “similar” responses given to the lures.  

Our results regarding false recognition show a similar pattern observed in the false memory 

studies where perceptual relatedness was systematically manipulated using morphed faces (Jeye, 

McCarthy, & Slotnick, 2020; Turney & Dennis, 2017). Turney and Dennis (2017) found an increase of 

false alarms with higher levels of morph similarity, concluding that false memories at least partially 

result from the amount of perceptual overlap between the original items and lures. This pattern of false 

recognition is consistent with the Fuzzy Trace Theory (Reyna & Brainerd, 1995). In case of high 

perceptual similarity between lure and target, lures are more likely to serve as retrieval cues for episodic 

detail-rich verbatim traces, while in case of low perceptual similarity, lures are better retrieval cues for 

gist traces. Successful lure discrimination would require a decision based on verbatim trace, but even in 

case of a verbatim response, a higher overlap of perceptual details between target and lure is more likely 

to result in false recognition. Jeye and colleagues (2020) reported a similar overall increase of incorrect 

“old” responses with the overlap between targets and lures, with the exception of the most similar 20% 

morph that showed a decrease in false alarm. Maybe this difference from our results could be the 

ascribed to the differences in similarity levels, or some unique property of the computer-generated faces 

used in the study. 

Finally, it should be highlighted that the encoding type (incidental/intentional) did not affect 

performance in Experiment 2. This pattern of findings is similar to the results of Experiment 1. 
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Specifically, the encoding instruction did not affect the ability to recognize target faces (for similar 

results, see e.g., Bower & Karlin, 1974), lure discrimination performance, and there was no impact of 

encoding type on the false recognition of lures either. The rationale for using two encoding instruction 

types is that in experimental psychology, recognition memory is often tested following intentional 

learning, while tasks assessing mnemonic discrimination are usually used with incidental encoding 

instructions (e.g., Lacy et al., 2011; Segal, Stark, Kattan, Stark, & Yassa, 2012; Stark et al., 2013). Based 

on the results of our first two experiments, we conclude that our task can be used to investigate the 

behavioral consequences of pattern separation and completion with different encoding instructions 

(incidental and intentional) and with different test types (confidence ratings and recognition task with 

“old”/”similar”/”new” options). 

In sum, we developed a new paradigm to assess the behavioral manifestation of two basic 

computational mechanisms of the hippocampus. Mnemonic similarity is often assessed by modified 

recognition memory tasks using photographs of everyday objects as stimuli (Stark et al., 2013; Stark et 

al., 2015; Stark & Stark, 2017). One advantage of this task type is that a variety of features is used for 

mnemonic discrimination (color, size, orientation, etc.). Consequently, the task becomes robust to 

individual strategies and practice effects (see Stark et al., 2019). On the other hand, using images of 

various objects as stimuli also has disadvantages. For example, in this version, target and lure items are 

semantically related, while the foil stimuli typically belong to other semantic categories. Consequently, 

targets and foils can be discriminated on a semantic basis, whereas targets and lures can only be 

distinguished on a perceptual basis. In contrast, we decided to use facial stimuli due to multiple reasons. 

First, it is difficult to give verbal labels for unfamiliar faces (Diamond & Carey, 1986; Ellis et al., 1980; 

Lindsay et al., 1994), therefore, it can reduce the effect of inter-individual differences in verbalization 

strategies. Relatedly, the discrimination of unfamiliar faces cannot be feasible on a semantic basis. 

Finally, faces have consistent primary features since the positions of eyes, nose, and mouth are constant. 

Thus it is relatively easy to construct a stimulus set with the perceptual similarity between targets and 

lures held under control by morphing faces into each other.  

There have been other studies in the neuroimaging literature that used facial stimuli to 

investigate behavioral pattern separation. For example, Kirwan and Stark (2007) used color photographs 
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of faces, however, there were several possible differences between lure images, such as lighting, 

hairstyle, gaze direction, etc. In another study Chang and colleagues (2015) used morphed faces to 

investigate the effect of a phenomenon specific to face recognition on pattern separation performance. 

As described before, their findings are in line with the results of our second experiment, further pointing 

to the conclusion that morphed facial stimuli could be an effective tool to assess pattern separation 

performance even outside of the context of studies pertaining to face recognition. 

 

Experiment 3: The Effect of Discrimination Practice on Memory Performance 

 The second aim of the present study was to examine whether pattern separation and its 

behavioral manifestation can be altered by a recognition memory task that involves discrimination 

practice. To investigate whether repetition itself affects memory performance, we used a control 

condition where participants were presented with facial stimuli but were not required to discriminate 

between them.  

 Our results showed that following discrimination practice, lure discrimination performance (as 

measured by the ratio of “similar” responses given to the lure items) was better for weaker morphs (when 

there was a 50% or a 75% difference in the features of the target face and its lure) as compared to the 

control condition. Additionally, as a general pattern, discrimination practice increased false recognition 

scores for the lures (as measured by the rate of “old” responses to lures minus the rate of “old” responses 

to unmorphed foils), however, the low false recognition rate for 75% morphs makes determining the 

effect of practice on this lure type difficult. Although we collected only behavioral data, perhaps we can 

conclude that practice in the form of a recognition memory task that involves discrimination between 

two stimuli presented simultaneously may alter pattern separation and pattern completion. However, 

future neuroimaging studies are needed to verify this assumption.  

 Increased lure discrimination performance indicates that discrimination practice promotes the 

formation of detailed, unique memory representations. This finding is consistent with the results of 

previous studies investigated the effect of memory retrieval on subsequent memory performance. These 

studies showed that retrieval supports interference resolution (Racsmány & Keresztes, 2015; Szpunar et 

al., 2008), and consequently, the formation of distinct memory representations. Although the beneficial 
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impact of memory retrieval is not always apparent in case of recognition memory tasks (see the meta-

analytic review of Rowland, 2014), here we present results showing that memory performance on a 

modified recognition task benefits from retrieval practice. Several authors suggest that the crucial factor 

is the type of the recognition memory task. Specifically, as long as the task requires the retrieval of 

specific details associated with the encoding situation, the benefits of retrieval practice can be observed 

in recognition performance (Chan & McDermott, 2007; Read, 1979; Verde, 2004). Our results are in 

support of this view: even though we found no effect of practice in standard recognition performance 

for target stimuli, the discrimination performance for lures increased following recognition practice. 

While successful lure discrimination requires the retrieval of the original item to detect the differences 

in details between the original and the lure (Clark & Gronlund, 1996; Norman & O’Reilly, 2003; Rotello 

& Heit, 1999; Rotello et al., 2000), recognition scores of target items in the MST are suggested to rely 

more heavily on familiarity (Stark et al., 2013). Correspondingly, in the present study lure discrimination 

proved to be an index of memory performance that was more sensitive to the effects of practice than 

target hit rate. 

In addition to correct lure discrimination, repeated discrimination practice affected the memory 

performance related to lures by increasing false recognition as well. As it was described previously, lure 

discrimination serves as a behavioral measure of pattern separation and false alarm for lures serves as 

an index of a strongly related process, pattern completion (see Stark et al., 2019). Pattern completion 

plays a key role in re-instating memory representations from incomplete or degraded cues, and in case 

of explicit retrieval tasks it is suggested to precede pattern separation as a part of a recall-to-reject 

strategy (Hunsaker & Kesner, 2013). Since recalling the original item is a frequently employed strategy 

for the discrimination between targets and partially overlapping lures (Kirwan & Stark, 2007; Norman 

& O’Reilly, 2003), it can be expected that practicing the material with a method that affects pattern 

separation performance leads to changes in pattern completion as well. Accordingly, as a process that 

involves retrieval of the original item, pattern completion was facilitated by discrimination practice even 

when pattern separation, and therefore successful lure discrimination did not follow the reinstatement 

of the original memory representation, resulting in the false recognition of the lure. 
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In sum, we found that repeated practice involving a discrimination task increased both long-

term pattern separation performance and pattern completion compared to repetition of the material. 

These findings are in line with the view that retrieval practice only have a beneficial effect on recognition 

performance if the task requires the retrieval of specific details of the memory representation. Both 

behavioral pattern separation and pattern completion involve the reinstatement of the original 

representation, thus they can be simultaneously altered by discrimination practice. 
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List of figure captions and legends 

 

Figure 1. Stimulus exemplars (‘A’) and the procedures of Experiment 1 and Experiment 2 (‘B’).  

 

Note(s). (‘A’) Targets were exact repetitions of faces presented at encoding; lures were morphed faces 

that were visually similar to the target faces; morphed foils were new faces that were used during the 

morphing process but were not presented at encoding; unmorphed foils were new faces that were not 

used during the morphing process and were not presented at encoding. (‘B’) Participants were presented 

with targets, lures, and foils in the recognition test phase of the memory task, and were asked either to 

make recognition confidence judgments (Experiment 1) or to give “old”/”similar”/”new” decisions 

(Experiment 2). 

PSI = pre-stimulus interval. 

 

Figure 2. Discrimination between targets versus lures (25%, 50%, and 75% morphed faces) as well as 

targets versus foils (morphed and unmorphed faces) in the two encoding conditions (incidental and 

intentional), separately (Experiment 1). 

 

Note(s). AUC = Area Under the Curve; error bars represent the standard error of the mean; *** p < .001.  

 

Figure 3. Lure discrimination performance and false recognition in the two encoding conditions 

(incidental and intentional), separately (Experiment 2). 

 

Note(s). (‘A’) Lure discrimination performance refers to the percentage of “similar” responses to lure 

(morphed) faces minus the percentage of “similar” responses to unmorphed foils. (‘B’) False recognition 

refers to the percentage of “old” responses to lure (morphed) faces minus the percentage of “old” 

responses to unmorphed foils.  

Error bars represent the standard error of the mean. *** p < .001.  
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Figure 4. The experimental design and the procedure of Experiment 3. 

 

Note(s). In Experiment 3 participants were presented with images of faces and were instructed to 

memorize them. Following this encoding stage, subjects participated in a practice phase where they 

either performed a forced-choice recognition memory task (discrimination condition) or were asked to 

memorize the faces (control condition). The final recognition memory test was performed in a different 

session following a 48-hour delay where participants made “old”/”similar”/”new” decisions.  

PSI = pre-stimulus interval. 

 

Figure 5. Lure discrimination performance and false recognition in the discrimination practice and 

control conditions (Experiment 3). 

 

Note(s). (‘A’) Lure discrimination performance refers to the percentage of “similar” responses to lure 

(morphed) faces minus the percentage of “similar” responses to unmorphed foils. Discrimination 

practice resulted in a higher rate of correct “similar” responses for weaker morphs (50% and 75% 

morphs). (‘B’) False recognition refers to the percentage of “old” responses to lure (morphed) faces 

minus the percentage of “old” responses to unmorphed foils. Practice increased false recognition for 

lures regardless of their similarity to the target stimuli.  

Error bars represent the standard error of the mean. * p < .05; *** p < .001.  

 

 

 

 

 

 

 

 


