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a b s t r a c t

Flanking lateral masks enhance or weaken the detection of a low-contrast visual target. This effect
depends on the target-to-mask distance. An improvement of stimulus detection can also be observed
when participants imagine (i.e., retrieve from memory) the previously presented masks. In this
double-blind, placebo-controlled study, we show that the gamma-aminobutyric acid-A (GABAA) receptor
agonist alprazolam disrupts perceptual but not imagery enhancement of contrast detection in individuals
with generalized anxiety and adjustment disorder. The weakened target detection at short target-
to-mask distances became more pronounced after the administration of the GABA-agonist in both
perception and imagery conditions. Healthy control participants did not differ from individuals with
generalized anxiety and adjustment disorder receiving placebo. These results indicate that perception
and imagery can be dissociated by boosting GABA-ergic neurotransmission. Further studies are
warranted to investigate this effect in healthy individuals.

� 2014 Published by Elsevier Ltd.
42
64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84
1. Introduction

The notion of ‘‘seeing in the mind’s eye’’ or visual imagery,
which refers to an active and intentional reconstruction and visu-
alization of images in our inner world, has been the subject of
intense debate since the work of Aristotle and Plato on Phantasia,
and, in close conjunction with the emergence of memory traces,
imagery may have a cardinal role in the birth of western culture
(Thomas, 2014). A fundamental open question is how perception,
imagery, and memory interact during human cognition.

Recently, it has been emphasized that early visual areas play a
multifaceted role in the representation of information, including
stimulus-driven perception, top-down generation of images that
have not been perceived before (mental imagery), and the mainte-
nance or retrieval of previously seen pictures (visual working
memory, internally directed attention, and retrieval of long-term
memory traces) (Gazzaley & Nobre, 2012; Harrison & Tong, 2009;
Kay et al., 2008; Klein et al., 2000; Kosslyn & Thompson, 2003;
Kosslyn, Thompson, & Ganis, 2006; Mesulam, 2008; Pasternak &
Greenlee, 2005; Pylyshyn, 2002; for a review of early findings on
brain activation and mental imagery, see Roland & Gulyás, 1994).
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Using multivariate analysis to decode the information from neuro-
nal activity, as revealed by functional magnetic resonance imaging,
Albers et al. (2013) showed that stimulus identity could be recon-
structed from neuronal activity patterns in early visual areas when
the participant imagined the stimulus or maintained that in work-
ing memory. The neuronal activity patterns accompanying imagery
and working memory were very similar to that measured during
stimulus-driven visual perception, suggesting that early visual
areas serve as a general ‘‘dashboard’’ for bottom-up and top-down
processes (Albers et al., 2013; for a review of new behavioral and
imaging methods in mental imagery research, see Pearson, 2014).

It has long been recognized that visual perception is specifically
modulated by gamma-aminobutyric-acid (GABA), a major inhibi-
tory neurotransmitter in the visual cortex (Iversen, Mitchell, &
Srinivasan, 1971; Pettigrew & Daniels, 1973). Studies using
pharmacological interventions in humans showed that the GABAA

receptor agonist lorazepam disrupted early-stage ‘‘filling-in’’,
which is critical for the integration of local contours (Beckers
et al., 2001; Giersch, 1999; Giersch et al., 1995). Consistent with
these findings, studies applying magnetic resonance spectroscopic
measurements in early visual areas confirmed the role of GABA in
perceptual integration of target and surround (orientation-specific
surround suppression) (Yoon et al., 2010). Furthermore, GABA ago-
nists have been shown to reduce visual awareness (van Loon et al.,
2012) and to change contents of consciousness during bistable per-
esearch
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Table 1
Demographic characteristics of the participants.

HC (n = 15) GAD (n = 20) AD (n = 20)

Age (years) 32.6 (8.0) 34.7 (6.0) 31.5 (7.3)
Gender (male/female) 7/8 9/11 9/11
Education (years) 13.6 (3.7) 12.7 (4.7) 12.3 (4.3)
HAM-D – 12.4 (5.7) 8.7 (4.8)
HAM-A – 5.9 (3.8) 6.9 (4.2)

Data are mean (standard deviation) with the exception of gender. HC – healthy
control, GAD – generalized anxiety disorder, AD – adjustment disorder, HAM-D
– Hamilton Rating Scale for Depression (0–7: no depression, 8–15: mild,>15:
severe), HAM-A – Hamilton Rating Scale for Anxiety (0–5: no anxiety, 6–15:
mild,>15 severe). The three experimental groups did not differ in age, gender ratio,
and education (two-tailed t tests and chi-square tests, p > 0.2).
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ception (van Loon et al., 2013). In the light of these results, it is
plausible to hypothesize that GABA agonists affect not only percep-
tual integration, but they also have an impact on mental imagery.

Ishai and Sagi (1995, 1997) designed an elegant paradigm to
show that early-stage visual perception and imagery have common
mechanisms. Specifically, they asked observers to detect a low-
contrast visual target (Gabor patch) flanked by two lateral masks
(Fig. 1). This is a basic scenario during which local visual detectors
interact to obtain a primitive ‘‘shape’’ (Kovács & Julesz, 1994). As
expected (Polat & Sagi, 1993), collinear flankers placed in a partic-
ular distance from the target enhanced target detection. Strikingly,
a similar decrease in target detection threshold was observed
when participants imagined the previously presented masks
(Ishai & Sagi, 1995, 1997). This suggests that physically presented
and imagined flankers are both able to influence the detection of
target stimuli.

In the present study, we investigated how perceptual and imag-
ery processes are modulated by GABAA receptor agonist benzodi-
azepines. This pharmacological manipulation has been shown to
alter perceptual organization in humans (Beckers et al., 2001;
Giersch, 1999; Giersch et al., 1995). Given that early perception
and imagery are thought to have shared mechanisms, we hypoth-
esized that GABA agonists would disrupt both perception and
imagery in the lateral masking task of Ishai and Sagi (1995, 1997).

We assessed individuals with mild psychological difficulties
with the assumption that they did not differ from healthy partici-
pants at baseline contrast detection and lateral masking. This
assumption was tested by the inclusion of a healthy control group.
The assessment of patients instead of healthy volunteers was an
unavoidable methodological limitation, because we had no allow-
ance to administer GABA agonists to healthy people.
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2. Methods

2.1. Participants

We recruited the participants at the National Institute of Psy-
chiatry and Addiction, Budapest and Szeged, Hungary. The healthy
control group comprised individuals from the hospital staff. Alto-
gether, we had three experimental groups: (1) individuals with
generalized anxiety disorder (GAD) (n = 20), (2) adjustment disor-
der (AD) (n = 20), and (3) healthy control volunteers (n = 15)
(Table 1). AD (stress-response syndrome) is diagnosed when an
individual is not able to cope with or adapt to stressful life events,
but the diagnostic criteria of major psychiatric disorders are not
fulfilled (e.g., mild, clinically sub-threshold depression or anxiety).
Fig. 1. Illustration of Gabor stimuli from the perception task when lateral masks
were present and imagery task when the masks were physically absent.

Please cite this article in press as: Kéri, S. Dissecting perception and memory-d
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AD is characterized by depressed mood, anxious symptoms, or
disturbances in conduct (American Psychiatric Association, 2013).

The patients did not receive any pharmacological treatment
before the experiment. The severity of anxiety and depression
was evaluated with standard clinical scales (Hamilton, 1959,
1960), and the diagnosis was established by trained and supervised
clinical psychiatrists according to standard criteria (American
Psychiatric Association, 2013). We included patients because we
were not allowed to administer benzodiazepines to healthy people.
Two separate groups with different disorders (GAD and AD) were
tested to explore whether the results are replicable across different
disorders. The characteristics of the participants are summarized in
Table 1. The study was conducted in accordance with the Declara-
tion of Helsinki and was approved by the institutional ethics board.
All participants gave written informed consent.
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2.2. Randomization and pharmacological intervention

Experiments were conducted between 9 and 11 a.m. GAD and
AD patients were randomized using the RANUNI module of SAS
(Statistical Analysis System) (SAS Institute Inc., Cary, NC). Half of
them received placebo (lactose), and half of them received the
GABAA receptor agonist alprazolam according to standard clinical
protocols (Rickels & Rynn, 2002). The oral dose of alprazolam
was 0.02 mg/kg. We chose this dose because it is equivalent to that
of lorazepam, which is the most frequently applied GABA agonist
in visual experiments (Beckers et al., 2001; Schatzberg, Cole, &
Debattista, 2010). However, lorazepam was not available in Hun-
gary at the time of the experiment, and alprazolam exhibits several
advantages in clinical practice regarding its side-effect profile
(Schatzberg, Cole, & Debattista, 2010). We performed the experi-
ment at the estimated peak plasma concentration of alprazolam
(1.5 h following administration) (Schatzberg, Cole, & Debattista,
2010). Healthy control individuals were tested at baseline without
placebo or alprazolam administration.
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2.3. Stimuli and procedure

We previously modified the procedure of Polat and Sagi (1993)
to fit for patient populations (Kéri et al., 2005a, 2005b; Must et al.,
2004). The present experiment is an extended version of the per-
ceptual task including an imagery component (Ishai & Sagi, 1995,
1997). In the perception condition, the contrast threshold was
measured for a foveal target Gabor patch flanked by two lateral
Gabor masks (Fig. 1). An imagery task followed the perception task
during which the previously seen masks were not physically pres-
ent, and participants were asked to imagine them.

Stimuli were presented on an NEC MultiSync PA301W monitor
(NEC, Itasca, IL), controlled by a Dell XPS workstation. The display
area subtended 10� by 10� from a viewing distance of 150 cm. The
riven imagery by boosting GABA-ergic neurotransmission. Vision Research
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mean display luminance was 50 cd/m2. The Michelson-contrast of
the masks was 40% with a Gaussian envelope size of 0.15�.

The trial was initiated by the participant who pressed a key.
There were four subsequent phases during a trial: a no-stimulus
(0.5 s), a first stimulus (90 ms), a second no-stimulus interval
(1 s), and a second stimulus (90 ms). A session included nine alter-
nating blocks (50 trials/blocks) of perception followed by imagery.
The target-to-mask distance was 0, 3, or 6k. Each block included
one target-to-mask distance. The order of blocks was randomized.
Each block of perception was followed by the corresponding imag-
ery block during which participants were asked to imagine what
they had just seen. The participant was asked to indicate which
of the stimulus periods contained the target by pressing two differ-
ent keys. The contrast threshold of the target was measured by a
staircase method as described previously (Polat & Sagi, 1993;
Kéri et al., 2005a, 2005b). Threshold changes in perception and
imagery conditions were calculated relatively to the baseline when
an isolated target was presented with two peripheral crosses.

The delay between perception and imagery tasks was either
0 min (immediate presentation of the imagery task after the per-
ception task) or 5 min. We included an immediate and a delayed
condition in order to test how sensory traces established during
the perception task were stored in memory and how they could
be retrieved during the imagery condition.

The current paradigm differed from the original task of Ishai
and Sagi (1995, 1997). In order to shorten the procedure, we used
only three critically relevant target-to-mask distances (0k: peak
inhibitory effects of the masks on the target; 3k: peak excitatory
effects of the masks on the target; 6k: negligible effects of the
masks on the target). Second, we eliminated the control condition
during which an isolated target patch was presented after the per-
ception task but participants were not requested to imagine the
masks. Note, however that this control condition is not the same
as the separate baseline condition when the target is presented
in the absence of Gabor flankers (only two peripheral high-contrast
crosses are presented). Threshold changes are compared to the lat-
ter baseline condition (Ishai & Sagi, 1995, 1997). This simplification
was necessary because many participants were not able to stay on
the original task (i.e., the procedure was too long).
2.4. Statistical analysis

The STATISTICA 11 (StatSoft, Inc., Tulsa), Prism 6 (GrpahPad,
Inc., La Jolla), and SAS (Statistical Analysis System) (SAS Institute
Inc., Cary, NC) software packages were used for data analysis. Con-
trast threshold data were log-transformed. Analyses of variance
(ANOVAs) were performed to compare experimental groups
(within-subjects factors: target-mask distance and delay between
perception and imagery tasks). Tukey Honestly Significant Differ-
ence (HSD) tests were applied for post hoc analysis. The level of
statistical significance was set at a < 0.05.
Fig. 2. Results from the perception task. Mean log-threshold elevation in healthy
controls, individuals receiving placebo and alprazolam. Error bars indicate 95%
confidence intervals. ⁄p < 0.01 (Tukey HSD post hoc tests).
3. Results

3.1. Perception

An ANOVA was conducted on the log-contrast threshold eleva-
tion data. We first compared individuals receiving placebo and the
GABA-agonist alprazolam. The within-subjects factors were delay
(0 and 5-min delay period between perception and imagery) and
target-to-mask distance (0, 3, and 6k). The ANOVA revealed a sig-
nificant main effect of placebo vs. alprazolam group (F(1,38) =
58.32, p < 0.001, g2 = 0.61) and a significant interaction between
group and target-to-mask distance (F(2,76) = 17.59, p < 0.001,
g2 = 0.32). This two-way interaction was further explored with
Please cite this article in press as: Kéri, S. Dissecting perception and memory-d
(2014), http://dx.doi.org/10.1016/j.visres.2014.10.030
Tukey HSD tests. As shown in Fig. 2, there was a significant thresh-
old elevation at 0k in the alprazolam group compared with the pla-
cebo group (p < 0.01). It is also evident from Fig. 2 that at 3k the
enhancing effect of masks was not observed in the alprazolam
group, whereas it was detectable in the placebo group. The differ-
ence between individuals receiving placebo and alprazolam was
significant at 3k (p < 0.001). At 6k, threshold elevation was similar
in both groups (p > 0.5). Finally, the results were highly similar at
both delay intervals (ANOVA main effect of delay, p > 0.5) (Fig. 2).

To test the possibility that individuals with GAD and AD, who
were randomized to placebo and alprazolam, differed from healthy
individuals, we performed a separate ANOVA including the healthy
control and placebo groups. This ANOVA revealed no significant
differences between the two groups and no significant interactions
(all p-values from the ANOVA > 0.2) (Fig. 2).

3.2. Imagery

We conducted an ANOVA for the imagery condition with the
same design as used in the perception condition. There was a sig-
nificant main effect of placebo vs. alprazolam group (F(1,38) =
14.83, p < 0.001, g2 = 0.28). The interaction between group and
target-to-mask distance was also significant (F(2,76) = 13.10,
p < 0.001, g2 = 0.25). As shown in Fig. 3, the main effect and the
two-way interaction were due to the significant threshold eleva-
tion at 0k (p < 0.001), which was consistently observable at both
delay periods. In both placebo and alprazolam groups, however,
there was a significantly decreased threshold at 3k relative to 0k
and 6k (p < 0.05), which indicates a reliable facilitation effect.

As in the case of perception, there was no significant difference
between healthy individuals and participants receiving placebo
(ANOVA main effect of group, p > 0.2) (Fig. 3).

3.3. Contrast threshold for isolated Gabor patches

When contrast threshold was measured in the absence of lateral
masks, participants belonging to different experimental groups
riven imagery by boosting GABA-ergic neurotransmission. Vision Research
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Fig. 3. Results from the imagery task. Mean log-threshold elevation in healthy
controls (HCs), individuals receiving placebo and alprazolam. Error bars indicate
95% confidence intervals. ⁄p < 0.01 (Tukey HSD post hoc tests).
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performed similarly (healthy controls: 7.5%, SD = 2.7; placebo:
7.2%, SD = 3.3; alprazolam: 7.9, SD = 3.5) (p > 2, all pairwise
comparisons).

3.4. Effect of baseline anxiety and depression

We found no significant correlations between threshold eleva-
tion and anxiety/depression (�0.1 < r < 0.1, p > 0.5). There was no
significant difference between individuals with GAD and AD
(p > 0.5).
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4. Discussion

The results of the present study did not confirm the main
hypothesis: the GABA agonist alprazolam disrupted peak facilita-
tion at 3k in the perception but not in the imagery task. Inhibition
at 0k target-to-mask distance was enhanced by the GABA agonist
in both perception and imagery tasks. From a broader perspective,
these results indicate that perception and memory-driven imagery
can be dissociated at the behavioral level by pharmacological
manipulation. Although the neuronal underpinnings of imagery
and perception are thought to be similar, including the activation
of early visual areas under many experimental conditions
(Kosslyn & Thompson, 2003; see also Roland & Gulyás, 1994 and
Dulin et al., 2008), Hume’s proposition (1740, 1978) that percepts
(impressions) and images (ideas) are substantially similar has not
been empirically confirmed (Thomas, 2014). The currently
accepted general framework of top-down modulation of sensory
cortical areas, i.e., during working memory and imagery, claims
that the prefrontal and parietal control regions re-instantiate neu-
ral activity in sensory cortex that was originally elicited when the
item was processed during stimulus-driven perception (Gazzaley &
Nobre, 2012; Kosslyn, Thompson, & Ganis, 2006; Mesulam, 2008;
Pasternak & Greenlee, 2005). However, recent research provided
evidence for some neuronal differences between perception and
Please cite this article in press as: Kéri, S. Dissecting perception and memory-d
(2014), http://dx.doi.org/10.1016/j.visres.2014.10.030
imagery. Specifically, Johnson and Johnson (2014) found that the
fusiform face area (FFA) contained item-specific information dur-
ing the perception of natural scenes, which was not evident during
the imagery (retrieval and maintenance) of the same scenes.

The finding that the pharmacological facilitation of GABA-ergic
neurotransmission dissociated perception and imagery is consis-
tent with the results of Giersch and Vidailhet (2006) who demon-
strated intact perceptual priming (completion of fragmented
pictures of everyday objects) and impaired visual contour process-
ing in long-term lorazepam users. In some respects, the completion
of fragmented pictures may require mental imagery of intact
objects.

The task of Ishai and Sagi (1995, 1997) is not a strictly defined
imagery task, because it does not include the generation of images
not been seen before. Instead, this task is based on the memory
trace and retrieval of lateral masks exposed during the perception
task (a memory-driven imagery task). Ishai and Sagi (1995)
showed that reducing the number of trials in the perception blocks
diminished the facilitation effect in the subsequent imagery task.
This suggests that a minimum number of stimulus repetitions
are indispensable to establish a memory trace. In addition, this
memory trace is maintained at least for 5 min available for retrie-
val in a subsequent imagery task to produce a facilitation effect
(Ishai & Sagi, 1995). GABA agonists seem to disrupt the perceptual
facilitation effects of masks during bottom-up processing, but they
do not impair the creation, storage, and retrieval of memory traces
of masks. In addition, when the masks are retrieved during the
imagery task, they produce a facilitation effect on target detection,
which suggests that this top-down process is dissociable from
bottom-up perception and is not influenced by GABA. These
effects are not a trivial consequence of sedation because sedation
induced by alprazolam is regularly associated with impaired
top-down memory retrieval (Verster & Volkerts, 2004). Imagery
during the effect of GABA-agonists may be similar to fully
reconstructed conscious images while dreaming (Nir & Tononi,
2010), but in the latter case, the retrieval of internal
representations are not voluntary and intentional in contrast to
memory-guided imagery.

Our behavioral data might provide a primer for electrophysio-
logical, functional neuroimaging, and animal studies to explore
the neuronal bases of these memory traces and the mechanism
of dissociable perceptual and retrieval processes. At the network
level, a key factor may be the differential modulation of temporal
properties of neurons. We speculate that GABA-induced synchroni-
zation at specific frequency ranges may have distinct effects on
perception and imagery (i.e., altered temporal properties of neuro-
nal groups may result in perceptual dysfunctions but intact retrie-
val of memory traces) (Elliot et al., 2000; Elliott, Giersch, & Seifert,
2006).

The GABA agonist also had a shared effect on perception and
imagery, that is, the enhancement of inhibition at small target-
to-mask distances. This suggests that GABA plays a critical role in
this inhibitory effect. It is intriguing that Ishai and Sagi (1995)
failed to find interference suppression between target and masks
in the imagery condition when they were overlapping. The authors
interpreted it as a lack of the classic Perky effect (Craver-Lemley &
Reeves, 1992; Waller et al., 2012), probably because the stimuli in
their simple detection task had no meaning. The present results
indicate that the Perky effect can be induced even in the case of
simple stimuli during a detection task if the GABA-ergic neuro-
transmission is boosted.

Although benzodiazepines are considered as a homogeneous
group of compounds stimulating GABAA receptors, the effect of
individual drugs on perception may be substantially different.
Beckers et al. (2001) showed that whereas lorazepam markedly
impaired perceptual integration, the effect of diazepam did not dif-
riven imagery by boosting GABA-ergic neurotransmission. Vision Research
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fer from that of the placebo. We used alprazolam, one of the most
commonly prescribed anxiolytic medications, which had a sub-
stantial effect on perceptual integration. Alprazolam is similar to
lorazepam regarding its high affinity to GABAA receptors
(Schatzberg, Cole, & Debattista, 2010). Nevertheless, it remains to
be demonstrated that alprazolam also has a detectable effect in
classic tasks of perceptual integration (Giersch, 1999). Lorazepam
prolongs visual information processing (Giersch & Herzog, 2004),
and its long-term use leads to decreased contrast sensitivity
(Giersch et al., 2006). In the single alprazolam administration par-
adigm, we did not detect decreased contrast sensitivity when an
isolated target was presented, which is against its non-specific
dampening effect on visual perception. However, alprazolam may
have a detrimental influence on threshold decrease in the lateral
masking paradigm by slowing down the flankers’ effects. Polat
and Sagi (2006) showed that excitation develops slowly, whereas
inhibition is rapid and follows stimulus onset and offset.

It is also interesting to note that, in healthy individuals, collin-
ear interactions induce a high false alarm rate at the critical 3k
target-to-mask distance during a Yes/No detection task (Polat &
Sagi, 2007). Zomet et al. (2008) showed that this high false alarm
rate is significantly less pronounced in hospitalized patients with
major depressive disorder. Moreover, the authors also found that
those patients who received lower doses of benzodiazepines
displayed a more similar performance to that of the healthy control
subjects (Zomet et al., 2008). Lower false alarm rate in patients can
be explained by reduced excitation between neurons and weaker
lateral interactions, which is consistent with our results regarding
the effects of GABA-agonist benzodiazepines.

A critical limitation of the present study is that we demon-
strated the GABA-related dissociation between perception and
imagery in individuals with GAD and AD and not in healthy volun-
teers. Given that GABA-ergic neurotransmission displays altera-
tions in mental disorders characterized by anxiety and
depression (Möhler, 2012), one may claim that the results are
due to these specific disease features and cannot be generalized
to healthy individuals. Although this possibility cannot entirely
be excluded, several aspects of these findings should be taken into
account. First, at baseline, there was no significant difference
among HCs and individuals with GAD and AD. Second, depressive
and anxiety symptoms did not correlate with visual variables.
Third, and most importantly, the effect of alprazolam was repli-
cated in GAD and AD, two disorders with substantially different
clinical profiles (American Psychiatric Association, 2013): while
GAD is a chronic anxiety disorder, AD is a mild, stress-related
manifestation of anxiety and depression, which regularly exhibits
rapid remission spontaneously or after a short therapeutic
intervention. Most of the individuals with AD are healthy with
transient psychological difficulties. In this respect, our methodo-
logical opportunities were limited because we were not allowed
to use lorazepam in healthy individuals, which is the most optimal
paradigm to obtain comparable results in the literature.

In conclusion, the results of this study provide evidence that
perception and imagery are dissociable at the level of early vision.
The pharmacological enhancement of GABA-ergic neurotransmis-
sion disrupts lateral facilitation during perception, but not during
the retrieval of memory traces that have a contextual effect on per-
ception. These results must be replicated in an independent group
of healthy individuals, and the exact neurobiological mechanisms
must be uncovered.
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