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Summary

Computational Linguistics (CL) is an interdisciplinary field of computer
science and linguistics concerned with the computational aspects of hu-
man language faculty. Information Extraction (IE) is one of the main
subtasks of CL, aiming at automatically extracting structured information
from unstructured documents. It covers a wide range of subtasks from
finding all the company names in a text to finding all the actors of an event.
Such capabilities are increasingly important for sifting through the enor-
mous volumes of text to find pieces of relevant information. Named Entity
Recognition (NER), the task of automatic identification of selected types of
Named Entities (NEs), is one of the most intensively studied tasks of IE.

The thesis presents the main issues of NER, concentrating on the Hun-
garian language. Since the focus of CL research has mostly been on the
English language, it is also discussed.

Chapter 1 gives an overview of the thesis, enumerates my publications
and my contribution to several tasks.

In Chapter 2, the key issue is how to define NEs. After studying the
annotation guidelines generally used in NER, I concluded that a stronger
definition is needed. For this purpose, I studied language philosophical
views and the linguistic background of the theory of proper names.

In Chapter 3, I give an overview of metonymy types, and present a
maximum entropy based system, which achieved the best overall results
in the SemEval-2007 metonymy resolution shared task.

Chapter 4 introduces the gold standard corpora used in NER. I present
a new method to create automatically NE tagged English and Hungarian
corpora built from Wikipedia.

In Chapter 5, rule-based and statistical NER systems are presented, in
whose development I participated. Our statistical NE tagger achieves the
best overall F-measure for Hungarian.

In Chapter 6, I describe the features generally used for NER, and pro-
vide results about their power. I also study the effects of gazetteer list size
on the performance of NER systems.
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Chapter 1

Overview and Theses

Computational Linguistics (CL) is an interdisciplinary field of computer
science and linguistics concerned with the computational aspects of hu-
man language faculty. It belongs to the cognitive sciences and overlaps
with the field of artificial intelligence, a branch of computer science aim-
ing at computational models of human cognition. The theoretical aim of
CL is to build formal theories and models about the linguistic knowledge
that a human needs for generating and understanding language. How-
ever, CL has an applied component as well, which is often called Human
Language Technology (HLT), and is used to develop software systems de-
signed to process or produce different forms of human language.

Information Extraction (IE) is one of the main subtasks of CL, aiming
at automatically extracting structured information from unstructured or
semi-structured machine-readable documents. It covers a wide range of
subtasks from finding all the company names in a text to finding all the
actors of an event, for example to know who killed whom, or who sold
their shares to whom. Such capabilities are increasingly important for sift-
ing through the enormous volumes of online text to find pieces of relevant
information the user wants.

Named Entity Recognition (NER), the task of automatic identification
of selected types of Named Entities (NEs), is one of the most intensively
studied tasks of IE. Presentations of language analysis typically begin by
looking words up in a dictionary and identifying them as nouns, verbs,
adjectives, etc. But most texts include lots of names, and if a system can-
not find them in the dictionary, it cannot identify them, making it hard to
produce a linguistic analysis of the text. Thus, NER is of key importance
in many Natural Language Processing (NLP) tasks, such as Information
Retrieval (IR) or Machine Translation (MT).

1



1.1 The Definition of Named Entities

The NER task, which is often called as Named Entity Recognition and
Classification in the literature, has two substeps: first, locating the NEs
in unstructured texts, and second, classifying them into pre-defined cate-
gories.

A key issue is how to define NEs. This issue interconnects with the is-
sue of selection of classes and the annotation schemes applied in the field
of NER. The NER task was introduced with the 6th Message Understand-
ing Conference (MUC) in 1995 [Grishman and Sundheim, 1996], consisting
of three subtasks: recognizing entity names, temporal and numerical ex-
pressions. Although there is a general agreement in the NER community
about the inclusion of temporal expressions and some numerical expres-
sions, the most studied types are names of persons, locations and organi-
zations. The fourth type, called Miscellaneous, was introduced in the
NER tasks of the Conference on Computational Natural Language Learn-
ing (CoNLL) in 2002 [Tjong Kim Sang, 2002] and 2003 [Tjong Kim Sang
and De Meulder, 2003], and includes proper names falling outside the
three classic types. Since then, MUC and CoNLL datasets and annotation
schemes have been the major standards applied in the field of NER.

The annotation guidelines of these shared tasks are based on examples
and counterexamples of what to annotate as a NE, rather than an exact,
theoretically well-founded definition of NEs. The next description is from
the MUC-7 Named Entity Task Definition [Chinchor, 1998a]:

“This subtask is limited to proper names, acronyms, and per-
haps miscellaneous other unique identifiers, which are catego-
rized via the TYPE attribute as follows:
ORGANIZATION: named corporate, governmental, or other
organizational entity
PERSON: named person or family
LOCATION: name of politically or geographically defined lo-
cation (cities, provinces, countries, international regions, bod-
ies of water, mountains, etc.)”

Besides this description negative examples (non-entities) are also pro-
vided. For annotating texts with NE labels, this kind of definition is not
really helpful. In addition, the annotation guidelines mentioned above
contain instructions only for English entities and non-entities. But in other
languages, e.g. in Hungarian, there are concepts which would be anno-
tated as NEs according to these guidelines, but they are not proper names,
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and thus are not considered as NEs. During the work of writing anno-
tation guidelines for Hungarian [Simon et al., 2006] based on the widely
used guidelines, their weak points became evident. From these experi-
ences we conclude that a stronger definition is needed for annotation of
NEs.

For this purpose, we studied Kripke’s theory [Kripke, 2000] about the
proper names as rigid designators. Kripke broke up with Frege’s [Frege,
2000] and Russell’s [Russell, 2000] description theory of proper names. In
Chapter 2, we give an overview of the philosophic and linguistic back-
ground of the theory of proper names. After discussing the theoretical
background, we try to map our findings to the NER task.

Thesis 1 After investigating several theories of proper names, we can conclude
that for getting a usable definition of NEs, the classic Aristotelian view on classi-
fication, which states that there must be a differentia specifica which allows some-
thing to be the member of a group, and excludes others, is not applicable. For
our purposes, the prototype theory seems more plausible, where proper names
form a continuum ranging from prototypical (person and place names) to non-
prototypical categories (product and language names). Finally, the goal of the
NER application will further restrict the range of linguistic units to be taken into
account.

The author’s contribution. The author participated in the work
which aimed at building a large, heterogeneous, manually NE anno-
tated Hungarian corpus called the HunNer corpus. The author pre-
pared the annotation scheme, and wrote the guidelines. For rea-
sons outside the author’s control, the HunNer corpus is still not en-
tirely complete, but the guidelines have been used for other projects,
e.g. for building the Criminal NE corpus1. These results are partly
described in [Simon, 2008] and [Simon et al., 2006] and in the an-
notation guidelines, which is accessible on the web through the URL
http://krusovice.mokk.bme.hu/∼eszter/utmutato.pdf.

1.2 Handling Metonymic Named Entities

In metonymy, the name of one thing is substituted for that of another
related to it [Lakoff and Johnson, 1980]. Besides common nouns, many
proper names are widely used metonymically, as it can be seen in Exam-
ples 1.1 and 1.2. (Examples of metonymic NEs are not intuitively cre-
ated by us, but they are accurate linguistic samples from the datasets

1http://www.inf.u-szeged.hu/rgai/nlp?lang=en&page=corpus ne
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provided by the organizers of SemEval-2007 metonymy resolution shared
task [Markert and Nissim, 2007b], various articles and the web. In exam-
ples, throughout the dissertation, the relevant parts are italicized, or, if
tags are important, they are in square brackets, with the tags in subscript.)

(1.1) Denise drank the bottle.

(1.2) Ted played Bach.

None of the two sentences is literally true. In Example 1.1, Denise did
not drink the bottle made of plastic or glass, but the liquid in the bottle. In
Example 1.2, Ted did not play the person whose name is Bach, but music
composed by Bach [Fass, 1988].

This type of reference shift is very systematic, in that it can occur with
any person name, as long as the discourse participants are aware of that
he/she is an artist, and they can associate an artwork with him/her. Lin-
guistic studies (e.g. Lakoff and Johnson [1980]; Fass [1988]) postulate con-
ventional metonymies that operate on semantic classes (here: person, lo-
cation, and organization names). A few examples of such conventional
metonymies follow (the standard name of metonymies are indicated with
small capitals after the example sentences, in parentheses):

(1.3) Spain won its third straight major soccer title Sunday. (PLACE
FOR PEOPLE)

(1.4) The broadcast covered Vietnam. (PLACE FOR EVENT)

(1.5) Apple announced new iPads and Mac computers.
(ORGANIZATION FOR MEMBERS)

(1.6) It was the largest Fiat anyone had ever seen. (ORGANIZATION
FOR PRODUCT)

Besides such regular shifts, metonymies can also be created on the fly:
in Example 1.7, ‘seat 19’ refers to the person occupying seat 19. Markert
and Nissim [2007a] call such occurrences unconventional metonymies.

(1.7) Ask seat 19 whether he wants to swap.

Apart from being regular and productive, metonymic usage of NEs is
frequent in natural language. State-of-the-art NER sytems usually do not
distinguish between literal and metonymic usage of names, even though
it would be helpful for most applications. Resolving metonymic usage
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of proper names would therefore directly benefit NER and indirectly all
NLP tasks that require NER. The importance of resolving metonymies has
been shown for a variety of NLP tasks, e.g. MT [Kamei and Wakao, 1992],
question answering [Stallard, 1993], and anaphora resolution [Harabagiu,
1998; Markert and Hahn, 2002].

Distinguishing literal and metonymic usage, then identifying the in-
tended referent can be seen as a classification task. Markert and Nissim
[2002] postulate the metonymy resolution task as comparable to the Word
Sense Disambiguation (WSD) task, so that metonymies can be recognized
automatically with similar methods. On this assumption, Markert and
Nissim [2007b] organized a shared task of the 2007 evaluation forum of the
Semantic Evaluation series (SemEval-2007), which aimed at recognition
and categorization literal, mixed, and metonymic usage of location and
organization names. We built a maximum entropy based system [Farkas
et al., 2007], which achieved the best overall results in the competition.
In Chapter 3, we give an overview of conventional and unconventional
metonymies, and present the system description.

Thesis 2 Since conceptual mappings between the related referents of metonymic
words are not linked to particular linguistic forms, recognizing metonymic NEs
is quite difficult. However, using some surface and syntactic information, and
applying several semantic generalization methods lead to improvement in resolv-
ing metonymies. We present a supervised system, which achieved the best overall
results in the SemEval-2007 metonymy resolution task. As our results show,
the main dividing line does not lie between conventional and unconventional
metonymies, rather between literal and metonymic usage.

The author’s contribution. Building the metonymy resolution system was
a joint effort with the co-authors, namely Richárd Farkas, György Szarvas,
and Dániel Varga. The author is responsible for investigating the related
work, and providing the theoretical background. In addition, the author
is responsible for some semantic generalization features, in particular for
using Levin’s verb classes and collecting the trigger words. The author
also participated in feature engineering to find out whether each feature
has the requisite discriminative power, the evaluation of results, and the
drawing of conclusions. These findings are described in Farkas et al. [2007]
and partly in Simon [2008].
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1.3 Gold and Silver Standard Corpora for
Named Entity Recognition

The supervised statistical approach requires a large amount of texts to
boost performance quality. Such a large and structured set of texts is called
a corpus. Corpora can be classified according to different criteria: they
can be general or domain-specific, monolingual or multilingual, tagged
or untagged. To be a gold standard corpus, a dataset has to meet several
requirements, for example to be exhaustive or aiming for representative-
ness; to be large enough for training and testing supervised systems on it;
and to contain accurate linguistic annotation added by hand.

The gold standard corpora in the field of NER are highly domain-
specific, containing mostly newswire, and are restricted in size. Re-
searchers attempting to merge these datasets to get a bigger training cor-
pus are faced with the problem of combining different tagsets and anno-
tation schemes. Manually annotating large amounts of text with linguistic
information is a time-consuming, highly skilled and delicate job, but large,
accurately annotated corpora are essential for building robust supervised
machine learning NER systems. Therefore, reducing the annotation cost is
a key challenge.

There are more ways to reach this goal. One approach is to use semi-
supervised or unsupervised methods, which do not require large amount
of labelled data. Another approach is to generate the resources automati-
cally, or at least applying NLP tools that are accurate enough to allow auto-
matic annotation. Yet another approach is to use collaborative annotation
and/or collaboratively constructed resources, such as Wikipedia or DBpe-
dia. Here we present a method which combines these approaches by auto-
matically generating freely available NE tagged corpora from Wikipedia.

An automatically generated or silver standard corpus provides an al-
ternative solution which is intended to serve as an approximation to a
gold standard corpus. Such corpora are very useful for improving NER in
several ways.

In Chapter 4, first, we give an overview of corpus building in general
(Section 4.1). Section 4.2 introduces the gold standard corpora used in
NER. In Section 4.3, we present our method to create automatically NE
tagged English and Hungarian corpora built from Wikipedia.

Thesis 3 We present a new method with which we can get closer to one of the
main goals of current NER research, i.e. reducing the annotation labour of corpus
building. We built automatically generated NE tagged corpora from Wikipedia for
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English and Hungarian. The one presented here is the first automatically NE an-
notated corpus for Hungarian which is freely available. As for English, there are
no such automatically built corpora freely available, except for the Semantically
Annotated Snapshot of the English Wikipedia, but their method cannot be applied
for less resourced languages. As our method is mainly language-independent, it
can be applied for other Wikipedia languages as well.

Thesis 4 We showed that automatically generated silver standard corpora are
very useful for improving NER in several ways: (a) for less resourced languages,
they can serve as training corpora in lieu of gold standard datasets; (b) they can
serve as supplementary or independent training sets for domains differing from
newswire; (c) they can be sources of huge entity lists, and (d) feature extraction.

The author’s contribution. The author participated in several corpus
building projects.

Within the Hungarian Diachronic Generative Syntax project, the au-
thor is responsible for building a corpus which contains all text sources
from the Old Hungarian period and a balanced selection from the Middle
Hungarian period. The corpus is available via an online search engine:
http://rmk.nytud.hu/. Related publications: Simon et al. [2011]; Si-
mon and Sass [2012]; Oravecz et al. [2010].

Within the ABSTRACT project, which was a multi-site, EU funded
research project that investigated how abstract linguistic concepts are
learned and represented by the human mind, the author is responsible for
building a corpus containing annotation of metaphorical expressions. Sev-
eral methods were investigated for automatic identification of metaphors.
The findings and the corpus itself are published in Babarczy et al. [2010a,b]
and Babarczy and Simon [2012].

Within the HunNer corpus project, the author is responsible for prepar-
ing the annotation scheme and writing the guidelines. The corpus is de-
scribed in Simon et al. [2006].

Building the silver standard corpora for English and Hungarian was a
joint effort with the co-author, Dávid Nemeskey. The author is responsi-
ble for investigating the related work, and providing the linguistic back-
ground. In addition, the author contributed to the construction of map-
ping between DBpedia ontology classes and gold standard tagsets, han-
dling several problematic cases of NE labelling, and analysing and evalu-
ating the error types of our method. Experiments for evaluating the newly
generated datasets are the author’s work. The method and the corpora
themselves are published in Simon and Nemeskey [2012] and Nemeskey
and Simon [2012].
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1.4 Approaches to Named Entity Recognition

The NER task, similarly to other NLP tasks, can be approached in two
main ways: by applying hand-crafted rules, or by statistical machine
learning techniques. This dichotomy is typical in the entire field of NLP,
which dated back to end of the 1950s, when Chomsky published his influ-
ential review of Skinner’s Verbal Behavior [Chomsky, 1959]. Finite state and
probabilistic models, which were widely used before, had lost popularity
in this period, and NLP split very cleanly into two paradigms, the theory-
oriented or rule-based, and the data-driven or stochastic paradigms. In the
early 1990s, the success of statistical methods in speech spread to other ar-
eas of NLP. This period has been called as the “return of empiricism”. Due
to the philosophical background of the paradigms they have also been
called rationalist and empiricist approaches. Section 5.1 gives an overview
of the philosophical background and the history of the two camps, until
recent years, when the field comes together, and researchers try to build
hybrid systems reaping the benefits of both approaches.

A rule-based NER application requires patterns which describe the in-
ternal structure of names and context-sensitive rules which give clues for
classification. In Section 5.2, we give an enumeration of several kinds of
internal end external evidence of NER, and describe a rule-based system
using such patterns to extract NEs from Hungarian encyclopedic texts.
We point to the disadvantages of rule-based systems, and conclude that
applying machine learning algorithms is more useful for NER.

Statistical machine learning algorithms can be classified according to
the type of input data they need. Unsupervised learning means that we
do not have linguistically annotated data, thus the challenge is finding
hidden structure in unlabelled data. Semi-supervised learning combines
both labelled and unlabelled examples to generate an appropriate classi-
fier. NLP tasks can also be solved by using labelled corpora and super-
vised learning methods that induce rules by discovering patterns in the
manually annotated source text.

For building a supervised NER system, first we need a manually an-
notated gold standard corpus, which contains linguistic information. Typ-
ically, the algorithm itself learns its parameters from the corpus, and the
evaluation of the system is through comparing its output to an other part
of the corpus. So the corpus is divided into two parts: a training and a test
set. When building a supervised learning system, a major step is feature
extraction, that is collecting information from the data that can be relevant
for the task. These features are the input of the learning algorithm that
builds a model based on the regularities found in the data. After that the
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test set is tagged with the most probable labels, then they are compared
to the gold standard labels. The evaluation means here to quantify the
similarity between the two labellings. The whole process from training to
evaluating a supervised NER system is described in details in Subsection
5.3.1.

For major languages, hundreds of papers were published on NER sys-
tems based on several supervised machine learning techniques. There are
not too many language-dependent components of these, yet for Hungar-
ian, we are aware only of one quantitative study of a NER system which
is based on machine learning methods [Szarvas et al., 2006b]. Our statis-
tical NE tagger, the hunner system overperforms that system, achieving
the best F-measure for Hungarian. In Subsection 5.3.2, we give a detailed
system description.

Thesis 5 The NER task, similarly to other NLP tasks, can be resolved by apply-
ing hand-crafted rules or machine learning techniques. We present a rule-based
system developed for recognizing NEs in Hungarian encyclopedic texts and a su-
pervised machine learning NER system which achieved the best performance for
Hungarian. As our results show, applying statistical algorithms results in a more
robust system and in higher performance on Hungarian NER.

The author’s contribution. The author contributed to several works con-
cerned with rationalist and empiricist approaches to language acquisition
as well as to NLP tasks.

The author participated in the ‘Analogical generalisation processes in
language acquisition’ project, which had the aim of modelling the mech-
anisms of child language acquisition, specifically the process of learning
argument structures from the input available to young children. We ap-
plied several statistical models for the automatic acquisition of subcatego-
rization frames, and we concluded that data frequency and the size of the
input corpus are important factors in both psycholinguistics and machine
learning. These findings are published in Serény et al. [2009]; Babarczy
et al. [2009] and Simon et al. [2010].

Within the Hungarian Diachronic Generative Syntax project, the au-
thor participated in the development of a semi-automatic text normal-
ization system applied for Old Hungarian texts. Most of the work on
text normalization of historical documents is centered around a manually
crafted set of correspondence rules. In contrast, we used the noisy channel
paradigm to build an automatic normalization system. The human labour
has been shifted to building training data for the transliteration model, for
which the author is responsible. By the means of automatic normalization,
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the manual annotation process can be reduced to a selection of the right
solution from the list of candidates provided by the system. The method-
ology and the results are presented in Oravecz et al. [2009, 2010].

The rule-based system developed for recognizing NEs in a Hungar-
ian encyclopedia, Magyar Nagylexikon, remained unpublished, because
it was treated with confidentiality. The system development was a joint
effort with the colleagues, György Gyepesi, Lajos Incze, Zsolt Czinkos
and Árpád Kiss. The author is responsible for creating the NE affixing
rules and the transcribing rules for 20 languages, constructing and man-
ually checking the gazetteer lists, and writing regular expression patterns
providing information about the NEs’ internal and external evidence.

The development of the original hunner system was a joint effort with
the co-author, Dániel Varga. The author is responsible for feature engi-
neering, data collection and evaluation. The author did not participate in
the system’s reimplementation, but is responsible for implementing and
testing new features and collecting new gazetteers. The original system is
published in Varga and Simon [2006, 2007].

1.5 Feature Engineering

Features are descriptors or characteristic attributes of datapoints in a text.
In token-based classification tasks of NLP, feature vectors are assigned to
every token, where the feature vector contains one or more features. Gen-
erally, Boolean- or string-valued features are applied in NER. For exam-
ple, if a word is capitalized, it gets an iscap=1 feature. Feature vector
representation is a kind of abstraction over text. The task of the machine
learning algorithm is then to find regularities in this large amount of in-
formation that are relevant for NER.

Defining features for a supervised system is a manual work, similarly
to coding patterns for a rule-based system. In the statistical methodology,
however, the linguist does not tell anything about the power of the fea-
tures, but it is found out from the corpus. The human cognition tends to
realize only salient phenomena, thus declare features as important ones
which are then found out not to be important based on corpus data, and
vice versa. For this reason, the power of every feature has to be measured
on real data before inclusion into the system. This is called feature engi-
neering.

To measure the strength of features, we virtually built NER systems for
Hungarian and English by adding new features to them one by one. For
this purpose, we used the reimplemented version of the hunner system.
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In Chapter 6, we describe the features generally used for NER, and provide
results about their power. We organize the features along the dimension
of what kind of properties they provide: surface properties, digit patterns,
morphological or syntactic information, or gazetteer list inclusion. As for
the last kind of features, we also study the effects of gazetteer list size on
the performance of NER systems.

Thesis 6 We present a way of feature engineering in which the features most
often used in NER are measured for getting the knowledge about their discrimi-
native power. We conclude that for a supervised NER system the string-valued
features related to the character makeup of words are the strongest features. Quite
counterintuitively, features indicating casing information and sentence starting
position do not improve the performance. Features based on external language
processing tools such as morphological analysers and chunkers are also not neces-
sary for finding NEs in texts.

Thesis 7 We compare the performance of a maximum entropy NER system un-
der widely different entity list size conditions, ranging from a couple of hundred
to several million entries, and conclude that for statistical NER systems entity
list size has only a very moderate impact. If large entity lists are available, we can
use them, but their lack does not cause invincible difficulties in the development
of NER systems.

The author’s contribution. Defining most features presented in Chapter 6,
measuring and evaluating them is the author’s own work. Pre-processing
of the Hungarian and English data and enriching them with linguistic in-
formation so serving as an appropriate input corpus for NER is also the
author’s own work. (Except for mapping the chunk tags of the Szeged
Treebank to the Szeged NER corpus, which is the work of Attila Zséder
and Judit Ács.) Collecting and designing the gazetteers used in the exper-
iments is also the author’s own work.

The author contributed to the development of the Hungarian
morphdb, a lexical database and morphological grammar, which was used
for the morphological analysis of the input corpora used for NER. It is
published in Trón et al. [2005b, 2006a,b].

The author contributed to the work of designing a system for recog-
nizing metaphorical expressions by the means of different kinds of lists.
The author is responsible for designing the lists, developing the software
environment, and building the corpora on which the methods were eval-
uated. One of the important findings of this work is that using accurately
compiled lists by hand is the most successful method for recognizing the
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relevant elements in a text. These findings are published in Babarczy et al.
[2010a,b] and Babarczy and Simon [2012].

The author contributed to several works on feature engineering of
state-of-the-art NER systems: to building a system for recognizing
metonymic NEs in English texts (cf. Chapter 3) and to building the original
hunner system (cf. Chapter 5). In both of them, the author is responsible
for defining new features and measuring their strength. These findings
are published in Farkas et al. [2007] and Varga and Simon [2006, 2007].
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Chapter 2

The Definition of Named Entities

The major standard guidelines applied in the field of NER do not give
an exact definition of NEs, but rather list examples and counterexamples.
The only common statement they make is that NEs have unique reference.
For getting a usable definition of NEs, we investigate the approach taken
in the philosophy of language and linguistics, and we map our findings
to the NER task. We do not wish to give a complete description of the
theory and typology of proper names, but to find a plausible way to define
linguistic units relevant to the NER task.

The chapter is structured as follows. In Section 2.1, we give an
overview of the annotation schemes applied in the field of NER. Section
2.2 describes the philosophical approach, and Section 2.3 gives the linguis-
tic background of the theory of proper names. Section 2.4 concludes the
chapter with the most important findings about mapping the theory of
proper names to the NER task.

2.1 Annotation Schemes

The first major event dedicated to the NER task was the MUC-6 in 1995.
As the organizers write in their survey about the history of MUCs [Grish-
man and Sundheim, 1996], these conferences were rather similar to shared
tasks, because participants were required to submit their results to attend
the conference. Prior MUCs focused on IE tasks; MUC-6 was the first in-
cluding the NER task, which consisted of three subtasks [Sundheim, 1995]:

• entity names (ENAMEX): organizations, persons, locations;

• temporal expressions (TIMEX): dates, times;
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• number expressions (NUMEX): monetary values, percentages.

The annotation guidelines define NEs as “unique identifiers” of enti-
ties, and give an enormous list of what to annotate as NEs. However, the
best support for annotators is the restriction about what not to annotate:
“names that do not identify a single, unique entity”.

As for the temporal expressions, the guidelines distinguish between
absolute and relative time expressions. To be considered absolute, the ex-
pression must indicate a specific segment of time, e.g.

(2.1) twelve o’clock noon

(2.2) January 1979

A relative time expression indicates a date relative to the date of the
document, or a portion of a temporal unit relative to the given temporal
unit, e.g.

(2.3) last night

(2.4) yesterday evening

In MUC-6, only absolute time expressions were to be annotated.
The numeric expressions subsume monetary and percentage values.

Modifiers that indicate the approximate value of a number are to be ex-
cluded from annotation, e.g.

(2.5) about 5%

(2.6) over $90,000

The modified version of MUC-6 guidelines were used for MUC-7 NER
task in 1998 [Chinchor, 1998a]. The most notable change was that relative
time expressions became taggable. The MUC-7 guidelines became one of
the most widely used standards in the field of NER. They were used with
slight modifications for the Multilingual Entity Tasks (MET-1 and 2) [Mer-
chant et al., 1996] and for the Hub-4 Broadcast News Evaluation [Miller
et al., 1999] in 1999.

According to the MUC guidelines embedded NEs can also be anno-
tated, e.g.

(2.7) The [morning after the [July 17]DATE disaster]TIME
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The CoNLL conference is the yearly meeting of the Special Interest
Group on Natural Language Learning (SIGNLL) of the Association for
Computational Linguistics (ACL). Shared tasks organized in 2002 and
2003 were concerned with language-independent NER [Tjong Kim Sang,
2002; Tjong Kim Sang and De Meulder, 2003]. Annotation guidelines were
based on the NER task definition of the MITRE Corporation1 and the
Science Applications International Corporation (SAIC) [Chinchor et al.,
1999], which are slightly modified versions of the MUC guidelines. A new
type, Measure, was introduced for NUMEX elements, e.g.

(2.8) 23 degrees Celsius

In contrast to the MUC guidelines, instructions are given regarding cer-
tain kinds of metonymic proper names (see Chapter 3 for details), decom-
posable and non-decomposable names, and miscellaneous non-taggables.
The latter constitute a new category, Miscellaneous, which includes
names falling outside the classic ENAMEX, e.g. compounds that are made
up of locations, organizations, etc., adjectives and other words derived
from a NE, religions, political ideologies, nationalities, or languages.

As part of the Automatic Content Extraction (ACE) program (a series of
IE technology evaluations from 1999 organized by the National Institute
of Standards and Technology (NIST)), new NE types were introduced in
addition to the classic ENAMEX categories: Facility, Geo-Political
Entity, Vehicle and Weapon. The category Facility subsumes ar-
tifacts falling under the domains of architecture and civil engineering.
Geo-Political Entities are composite entities comprised of a popu-
lation, a government, a physical location, and a nation (or province, state,
county, city, etc.). The seven main types are divided into dozens of sub-
types and hundreds of classes [ACE, 2008]. The ACE program is con-
cerned with automatic extraction of content, including not only NEs but
also their relationships to each other and events concerning them. For the
purposes of this more complex task, all references to entities are annotated:
names, common nouns, noun phrases, and pronouns. In this regard, ACE
is exceptional in the race of NER standards, where common nouns and
pronouns are not to be annotated.

The Linguistic Data Consortium (LDC) has developed annotation
guidelines for NEs and time expressions within the Less Commonly Taught
Languages (LCTL) project. In contrast to the ones mentioned above, these
guidelines give an exact definition of NEs [Linguistic Data Consortium
LCTL Team, 2006]: “An entity is some object in the world – for instance,

1http://www.mitre.org/
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a place or a person. A named entity is a phrase that uniquely refers to
that object by its proper name, acronym, nickname or abbreviation.” Be-
sides the classical name categories (PER, ORG, LOC), they also annotate
Titles, which are separated from the person’s name, e.g.

(2.9) said [GlobalCorp]ORG [Vice President]TTL [John Smith]PER

The LCTL annotation guidelines are the first concerned with meaning
and compositionality of NEs: “The meaning of the parts of names are not
typically part of the meaning of the name (i.e. names are not compositional)
and, therefore, names cannot be broken down into smaller parts for anno-
tation.” Thus, a NE is treated as an indivisible syntactic unit that cannot
be interrupted by an outside element.

In addition to the classical ENAMEX, TIMEX and NUMEX categories,
there are a wide range of other, marginal types of NEs, which are relevant
for particular tasks, e.g. extracting chemical and drug names from chem-
istry articles [Narayanaswamy et al., 2003]; names of proteins, species, and
genes from biology articles [Rindfleish et al., 2000]; or project names, email
addresses and phone numbers from websites [Zhu et al., 2005].

Summary. Early works define the NER problem as the recognition of
proper names in general. Names of persons, locations and organizations
have been studied the most. Besides these classical categories, there is
a general agreement in the NER community about the inclusion of tem-
poral expressions and some numerical expressions, such as amounts of
money and other types of units. The main categories can be divided into
fine-grained subtypes and classes, and marginal types are sometimes in-
cluded for specific tasks. Annotation guidelines usually do not go fur-
ther in defining NEs than saying that they are “unique identifiers” or that
they “uniquely refer” to an entity. Only one of the guidelines mentions
the meaning and compositionality of NEs: it postulates NEs as indivisible
units, although earlier guidelines allow embedded NEs.

2.2 Language Philosophical Views: from Mill to
Kripke

“A proper name is a word that answers the purpose of showing what thing
it is that we are talking about, but not of telling anything about it”, writes
John Stuart Mill in his 1843 A Sytem of Logic [Mill, 2002]. According to him,
the semantic contribution of a name is its referent and only its referent.
One of his examples illustrating this statement is the name of the town
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Dartmouth. The town was probably named after its localization, because
it lies at the mouth of the river Dart. But if the river had changed its course,
so that the town no longer lay at the mouth of the Dart, one could still use
the name ‘Dartmouth’ to refer to the same place as before. Thus, it is not
part of the meaning of the name ‘Dartmouth’ that the town so named lies
at the mouth of the Dart.

Gottlob Frege’s puzzle of the Morning Star and the Evening Star chal-
lenges the Millian conception of names. In his famous work Über Sinn und
Bedeutung [Frege, 2000], he distinguishes between sense (Sinn) and refer-
ence (Bedeutung). Without the distinction between sense and reference,
the following sentences would be equal:

(2.10) The Morning Star is the Evening Star.

(2.11) The Morning Star is the Morning Star.

Both names have the same reference (Venus), so they should be inter-
changeable. However, since the thought expressed by Example 2.10 is dis-
tinct from the thought expressed by Example 2.11, the senses of the two
names are different. While Example 2.11 seems to be an empty tautology,
Example 2.10 can be an informative statement, even a scientific discov-
ery. If somebody did not know that the Evening Star is the Morning Star,
he/she could think that Example 2.11 is true, while Example 2.10 is false.

To solve the puzzle, without resorting to a two-tiered semantic the-
ory, Bertrand Russell used the description theory. The description theory of
names states that each name has the semantic value of some definite de-
scription [Cumming, 2012]. For example, ‘Aristotle’ might have the se-
mantic value of ‘the teacher of Alexander the Great’. ‘The Morning Star’
and ‘the Evening Star’ might correspond in semantic value to different
definite descriptions, and would make different semantic contributions to
the sentences in which they occur.

Frege and Russell both argue that Mill was wrong: a proper name is
a definite description abbreviated or disguised, and such a description
gives the sense of the name. According to Frege, a description may be
used synonymously with a name, or it may be used to fix its reference.
Saul Kripke concurred only partially with Frege’s theory. Description fixes
reference, but the name denoting that object is then used to refer to that
object, even if referring to counterfactual situations where the object does
not have the properties in question, writes Kripke in Naming and Necessity
[Kripke, 2000]. One of Kripke’s examples is Gödel and the proof of incom-
pleteness of arithmetic. If it turned out that Gödel was not the man who
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proved the incompleteness of arithmetic, Gödel would not be called ‘the
man who proved the incompleteness of arithmetic’, but he would still be
called ‘Gödel’. Thus, names are not equal to definite descriptions.

Kripke postulates proper names as rigid designators. Something is a
rigid designator if it designates the same object in every possible world.
The concept of a possible world (or counterfactual situation) is used in
modal semantics, where the sentence ‘Frank might have been a revolution-
ist’ is interpreted as a quantification over possible worlds. Kripke suggests
an intuitive test to find out what is a rigid designator. An updated exam-
ple: ‘the President of the US in 2012’ designates a certain man, Obama;
but someone else (e.g. Romney) may have been the President in 2012, and
Obama might not have; so this designator is not rigid. When talking about
what would happen to Obama in a certain counterfactual situation, we are
talking about what would happen to him. So ‘Obama’ is a rigid designator.

In the case of proper names, reference can be fixed in various ways.
In the case of initial baptism it is typically fixed by ostension or descrip-
tion. Otherwise, the reference is usually determined by a chain, passing
the name from link to link. In general, the reference depends not just on
what we think, but on other people in the community, the history of how
knowledge of the name has spread. It is by following such a history that
one gets to the reference.

Kripke argues that proper names are not the only kinds of rigid des-
ignators: species names, such as tiger, or mass terms, such as gold, certain
terms for natural phenomena, such as heat, and measurement units, such
as one meter are also examples. There is a difference between the phrase
‘one meter’ and the phrase ‘the length of the metre bar at t0’. The first
phrase is meant to designate rigidly a certain length in all possible worlds,
which in the actual world happens to be the length of the metre bar at t0.
On the other hand, ‘the length of the metre bar at t0’ does not designate
anything rigidly.

Summary. Kripke goes back to the Millian theory of names, and at
the same time breaks up with Frege’s theory, when he writes that proper
names do not have sense, only reference. He declares that a proper name
is a rigid designator, which designates the same object in every possible
world. Through examples he proves that definite descriptions are not syn-
onymous with names, but they can still fix a referent. In the case of proper
names, the reference can be fixed in an initial baptism, after which the
name spreads in the community by a chain, from link to link. In Kripke’s
theory, species names, mass terms, natural phenomena and measurement
units are also rigid designators.
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2.3 The Linguistic Approach

Besides the theory of rigid designators, another concept used in the lit-
erature to define NEs is that of unique reference. In Subsection 2.3.1, we
clear the meaning of the phrase ‘unique reference’, which seems to be used
non-systematically in NER guidelines. Unique reference can act as the sep-
arator line between proper names and common nouns. There are however
certain linguistic properties by which we can make a stronger distinction, as
described in Subsection 2.3.2. The main feature distinguishing between
them is the issue of compositionality, which is discussed in Subsection
2.3.3. Finally, we sum up our findings about the linguistic background
of proper names in Subsection 2.3.4.

2.3.1 Unique Reference

In the MUC guidelines [Chinchor, 1998a], the definition of what to anno-
tate as NEs is as follows: “proper names, acronyms, and perhaps mis-
cellaneous other unique identifiers”, and what not to annotate as NEs:
“artifacts, other products, and plural names that do not identify a single,
unique entity”. In the LCTL guidelines we find this definition: “a NE is a
phrase that uniquely refers to an object by its proper name, acronym, nick-
name or abbreviation” [Linguistic Data Consortium LCTL Team, 2006].

Let’s take these definitions one by one. In the first case, the phrase
‘unique identifiers’ is coordinated with ‘proper names’ and ‘acronyms’,
and ‘unique’ is an attributive adjective modifying the noun ‘identifiers’. So
‘unique’ means here that the identifier is unique, similarly to proper names
and acronyms. In the second case, however, it is the entity a linguistic unit
refers to that must be unique in order for the unit to qualify as a NE. In the
LCTL guidelines, the phrase ‘uniquely refers’ means something similar as
in the first case, it is therefore the referring linguistic unit that must be
unique, not the entity in the world to which it refers.

Here, and several other places in the literature, the difference between
the concepts of referring act and reference seems to be blurred. When
trying to determine what is unique, we find that in most grammar books
the names and the entities they refer to are not clearly distinguished. But
it does matter whether we are talking about Charlie or about the name
‘Charlie’. To prevent such an ambiguity, we always indicate the meta-
linguistic usage by single quotation marks.

By investigating various definition of proper names, we can conclude
that names refer to a unique entity (e.g. London), so names have unique ref-
erence [Quirk and Greenbaum, 1980], in contrast to common nouns, which
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refer to a class of entities (e.g. cities), or non-unique instances of a certain
class (e.g. city). However, we can refer to and even identify an entity by
means of common nouns. The difference is that proper names, even stand-
ing by themselves, always identify entities, while a common noun can do
so only in such cases when it constitutes a noun phrase with other linguis-
tic units. Common nouns may stand with a possessive determiner (e.g. my
car), or with a demonstrative (e.g. this car), or can be a part of a description
(e.g. the car that I saw yesterday).

Many proper names share the feature of having only one possible refer-
ence, but a wide range of them refer to more than one object in the world.
For example, ‘Washington’ can refer to thousands of people who have
‘Washington’ as their surname or given name, a US state, the capital of
the US, cities and other places throughout America and the UK, roads,
lakes, mountains, educational organizations, and so forth. These kind of
proper names are referentially multivalent [Anderson, 2007], but each of
the references is still unique.

Some proper names occur in plural form, optionally or exclusively. In
the latter case, the plural suffix is an inherent part of the name. These are
the so called pluralia tantum (e.g. Carpathians, Pleiades). According to their
surface form, it might seem that they can be broken down into smaller
pieces, but the Carpathians do not consist of carpathian1, carpathian2, ...,
carpathiann, just as the Pleiades do not consist of pleiades. These names
refer to groups of entities considered unique.

Names of brands, artifacts, and other products can be optionally used
in plural form. For example, ‘Volvo’ is a proper name referring to a unique
company. But if we put it in a sentence, like ‘He likes Volvos’, it will re-
fer to particular vehicles. This is a kind of metonymy, with the company
name used to refer to a product of this company (see Chapter 3 for more
details). Proper names in plural form can also be used in other kinds of fig-
ures of speech, for example in metaphors. In the phrase ‘a few would-be
Napoleons’, some characteristics of the emperor are associated with men
to which the word ‘Napoleons’ refers. In these cases, proper names act
like common nouns, i.e. they have no unique reference.

Additionally, there are a quite large number of linguistic units which
are on the border between proper names and common nouns, because
it is difficult to determine whether their reference is unique. Typically,
they are used as proper names in some languages, but as common nouns
in other ones. The difficulty of classification is usually mirrorred even
in the spelling rules. For example, in the case of events (World War II,
Olympic Games in English; 2. világháború, olimpiai játékok in Hungarian; Se-
gunda Guerra Mundial, Juegos Olı́mpicos in Spanish; Seconde Guerre mondiale,
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Jeux olympiques in French), expressions for days of the week and months of
the year (Monday, August in English; hétfő, augusztus in Hungarian; lunes,
agosto in Spanish; lundi, août in French), expressions for languages, nation-
alities, religions and political ideologies (Hungarian, Catholic, Marxist in
English; magyar, katolikus, marxista in Hungarian; húngaro, católica, marxista
in Spanish; hongrois, catholique, marxiste in French), etc. Categories vary
across languages, so there seems to be no language-independent, general
rule for classifying proper names.

2.3.2 Distinction between Proper Names and Common
Noun Phrases

As mentioned above, proper nouns are distinguished from common
nouns on the basis of the uniqueness of their reference. However, we can
make a stronger distinction based on other linguistic properties.

First, we have to clarify the disctinction between proper nouns and
proper names made by current works in linguistics (e.g. [Anderson, 2007;
Huddleston and Pullum, 2002]). Since the term ‘noun’ is used for a class of
single words, only single-word proper names are proper nouns: ‘Ivan’ is
both a proper noun and a proper name, but ‘Ivan the Terrible’ is a proper
name that is not a proper noun. From this distinction follows that proper
names cannot be compared to a single common noun, but to a noun phrase
headed by a common noun. A proper noun by itself constitutes a noun
phrase, while common nouns need other elements. In Subsection 2.3.1,
we give a few examples. In the subsequent analysis, proper names and
common noun phrases are juxtaposed.

Distinction between proper nouns and common nouns is commonly
made with reference to semantic properties. One of them is the classic ap-
proach: entities described by a common noun, e.g. ‘horse’, are bound to-
gether by some resemblances, which can be summed up in the abstract
notion of ‘horsiness’ or ‘horsehood’ [Gardiner, 1957]. A proper name,
on the contrary, is a distinctive badge: there is no corresponding resem-
blance among the Charlies that could be summed up as ‘Charlieness’ or
‘Charliehood’. Thus, we can say that common nouns realize abstraction,
while proper names make distinction. However, Katz [1972] argues that
the meaninglessness of names means that one cannot establish a semantic
distinction between proper names and common noun phrases. The lat-
ter are compositional, because their meaning is determined by their struc-
ture and the meanings of their constituents [Gendler Szabó, 2008], while
proper names “allow no analysis and consequently no interpretation of
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their elements”, quoting Saussure [1959]. Thus, proper names are arbi-
trary linguistic units, and are therefore not compositional. (See 2.3.3 for
more details.)

Moving on to syntax, common noun phrases are compositional,
i.e. they can be divided into smaller units, while proper names are indi-
visible syntactic units. This is confirmed by the fact that proper names
cannot be modified internally, as can be seen in these examples:

(2.12) beautiful King’s College

(2.13) *King’s beautiful College

(2.14) my son’s college

(2.15) my son’s beautiful college

Further evidence is that in Hungarian and other highly agglutinative
languages, the inflection always goes to the end of the proper name con-
stituting a noun phrase. Example 2.16 presents the inflection of a proper
name (here: a title), while Example 2.17 shows its common noun phrase
counterpart (consider the second determiner in the latter):

(2.16) Láttam az Egerek és embereket. ‘I saw (Of Mice and Men).ACC’

(2.17) Láttam az egereket és az embereket. ‘I saw the mice.ACC and the
men.ACC’

From the perspective of morphology, proper names must always be sa-
cred, which means that the original form of a proper name must be recon-
structible from the inflected form [Deme, 1956]. This requirement is mir-
rorred even in the current spelling rules in Hungarian: e.g. Papp-pal ‘with
Papp’, Hermann-nak ‘to Hermann’. Some proper names in Hungarian have
common noun counterparts as well, e.g. Fodor∼fodor (‘frill’), Arany∼arany
(‘gold’). Since the word ‘fodor’ is exceptional, when inflecting it as a com-
mon noun, the rule of vowel drop is applied: fodrot ‘frill.ACC’. However,
when inflecting it as a proper name, it is inflected regularly, without drop-
ping the vowel: Fodort ‘Fodor.ACC’. The common noun ‘arany’ also has
exceptional marking, it is lowering, which means that it has a as a link
vowel in certain inflectional forms, e.g. in the accusative, instead of the
regular bare accusative marker: aranyat ‘gold.ACC’. But as a proper name,
it is inflected regularly: Aranyt ‘Arany.ACC’. For details on Hungarian
morphology see Kornai [1994] and Kenesei et al. [2012]. Psycholinguistic
experiments on Hungarian morphology also confirm that proper names
are inflected regularly [Lukács, 2001], while common nouns may have ex-
ceptional markings.
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2.3.3 The Non-compositionality of Proper Names

In order to examine whether proper names are compositional or arbitrary
linguistic units, here we give an analysis of how knowledge about the
named entity can be deduced from the name2. Proper names are not sim-
ply arbitrary linguistic units, but they show the arbitrariness most clearly
of all, since one can give any name to his/her dog, ship, etc. It follows
from the arbitrariness of the initial baptism that proper names say nothing
about the properties of the named entity, in fact they do not even indicate
what kind of entity we are talking about (a dog, a ship, etc.).

Although monomorphemic proper names are classic examples of non-
compositionality, they are not semantically empty. For instance, Charlie
is a boy by default, but this name is often given to girls in the US, and
of course it can be given to pets or products. Semantic implications of
proper names (if any) are therefore defeasible. This is in contrast with
common nouns, since we cannot call a table ‘chair’ without violating the
Gricean maxims [Grice, 1975]. Monomorphemic proper names have only
one non-defeasible semantic implication, namely if one is called X, then
the predicate ‘it is called X’ will be true (cf. the Millian theory of proper
names in Section 2.2).

In the context of the current analysis, two types of polymorphemic
proper names can be distinguished. First, there are phrases which are
headed by a common noun and modified by a proper name, e.g. Roosevelt
square, Columbo pub. The second type consists of two (or more) proper
nouns, e.g. Theodore Roosevelt, Volvo S70.

In the case of the former, more frequent type, every non-defeasible se-
mantic implication (except the fact of the naming) comes from the head,
the modifier does not make any contribution. This can be shown by re-
moving the head: from the sentence ‘You are called from the Roosevelt’,
one cannot determine the source of the call, which might come from the
Roosevelt Hotel, from the Roosevelt College, or from a bar in Roosevelt
square. All we have is the trivial implication, that Roosevelt is the name of
the place. The fact that the modifier contributes nothing to the semantics
of the entire construction can be illustrated better by replacing the proper
names with empty elements, e.g. A square, B pub. The acceptability of the
construction is not compromised even in this case. One further argument
against compositionality is that if we try to apply it to polymorphemic
proper names, we get unacceptable result: Roosevelt has not lived on Roo-
sevelt square, and Columbo has never been at the Columbo pub.

2This subsection is a translated version of a section of the author’s article [Simon,
2008].
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In the second construction, both head and modifier are proper nouns.
The only contribution made by the head to the semantics of the phrase is
that we know that the thing referred to by the modifier is a member of the
group of things referred to by the head, e.g. Volvo S70 is a kind of Volvo,
but not a kind of S70.

Regarding polymorphemic proper names in general, we can say that
the head H bears the semantics of the entire construction, while the only
contribution of the modifier M is that it shows that M is called ‘M’ and that
it is a kind of F. This is in contrast with the classic compositional seman-
tics of common nouns, where the ‘red hat’ means a hat which is red, the
former president used to be a president, etc., and these implications are
non-defeasible.

2.3.4 Summary

This section gives an overview how we can distinguish between proper
names and common nouns using an approach based in linguistics. The
first distinguishing property is the unique reference: common nouns,
standing by themselves, never have unique reference. They have to be
surrounded by other constituents within a phrase to refer some unique
entity in the world, while proper nouns have unique reference on their
own. There are, however, proper names which seemingly refer to several
entities; it is shown through examples that these do have unique reference.
Additional linguistic properties of proper names are presented, based on
which a stronger distinction between proper names and common nouns
can be made. The distinction based on semantic properties is the clearest:
common noun phrases are compositional while proper names are not.

2.4 Conclusion

As can be seen from this overview, the definition of proper names is still
an open question in both philosophy and linguistics. If we try to apply
the findings presented above to the NER task, we are faced with various
challenges. However, there are a few statements which can be used as
pillars of defining what to annotate as NEs.

Early works formulate the NER task as recognizing proper names in
general. This generality posed a wide range of problems, so the domain
of units to be annotated as NEs had to be restricted. In this restricted do-
main, we find those names (person and place names) which have been
postulated as proper names from the very beginnings of linguistics (e.g. in
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Plato’s dialogue, Cratylus, and in Dionysius Thrax’ grammar). The third,
classical name type (organization names) has been mentioned in grammar
books from the 19th century. Although the range of linguistic units to an-
notate was cut, the challenges have remained, since these kinds of names
already exhibit properties which make the NER task difficult.

In the expression ‘named entity’, the word ‘named’ aims to restrict the
task to only those entities where rigid designators stand for the reference
[Nadeau and Sekine, 2007]. Something is a rigid designator if in every pos-
sible world it designates the same object and thus has unique reference –
unique in every possible world. Rigid designators include proper names
as well as species names, mass terms, natural phenomena and measure-
ment units. These natural kind terms are only partially included in the
NER task. The MUC guidelines allow for annotating measures (e.g. 16
tons) and monetary values (e.g. 100 dollars), which are rigid designators
according to Kripke’s theory. Some temporal expressions, typically abso-
lute time expressions, are also rigid designators (e.g. the year 2012 is the
2012th year of the Gregorian calendar), but there are also many non-rigid
ones, typically the relative time expressions (e.g. June is a month of an un-
defined year). Thus, the rigid designator theory must be restricted to keep
out species names, mass terms and certain natural phenomena, but must
also be loosened to allow tagging relative time expressions as NEs.

If we say that every linguistic unit which has unique reference must
be annotated as a NE, we should annotate common noun phrases as well.
However, dealing with common nouns is not part of the NER task, so other
linguistic properties of proper names and common nouns must be con-
sidered to make the distinction between them stronger. The greatest dif-
ference is the issue of compositionality. Applying Mill’s, Saussure’s, and
Kripke’s theory about the meaninglessness of names, we must conclude
that proper names are arbitrary linguistic units, whose only semantic im-
plication is the fact of the naming. Thus, the semantics of proper names
is in total contrast with the classic compositional semantics of common
nouns, as they are indivisible and non-compositional units. To map it to
the NER task: embedded NEs are not allowed, and the longest sequences
must be annotated as NEs (e.g. in the place name ‘Roosevelt square’ there
is no person name ‘Roosevelt’ annotated).

There still remain a quite large number of linguistic units which are
difficult to categorize. Typically, they are on the border between proper
names and common nouns, which is confirmed by the fact that their sta-
tus varies across languages. We should not forget that the central aim of
the NER task is extracting important information from raw text, most of
which is contained by NEs. Guidelines should be flexible enough to al-
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low the annotation of such important pieces of information. For getting
a usable definition of NEs, the classic Aristotelian view on classification,
which states that there must be a differentia specifica which allows some-
thing to be the member of a group, and excludes others, is not applicable.
For our purposes, the prototype theory [Rosch, 1973] seems more plau-
sible, where proper names form a continuum ranging from prototypical
(person and place names) to non-prototypical categories (product and lan-
guage names) [Van Langendonck, 2007] (consider the parallelism with the
order in which names are mentioned in grammar books). Finally, the goal
of the NER application will further restrict the range of linguistic units to
be taken into account.
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Chapter 3

Handling Metonymic Named
Entities

3.1 The Definition of Metonymy

Metonymy is the act of referring to something by the name of something
else that is closely related to it. The term is widely used in several dis-
ciplines, e.g. in the study of literature it is known as a form of figurative
speech (a trope), in rhetorics as a rhetorical strategy, and in linguistics it
is often postulated as sense extension. Earlier works on metonymy are
focused on distinguishing between metonymy and metaphor (e.g. Fass
[1988]). We follow Lakoff and Johnson’s cognitive view, namely that the
two concepts are quite different: metaphor is “principally a way of con-
ceiving of one thing in terms of another, and its primary function is un-
derstanding”, while metonymy “has primarily a referential function, that
is, it allows us to use one entity to stand for another” [Lakoff and Johnson,
1980].

Metonymy is a reference shift: with one linguistic unit we refer not to
the primary reference, but to a related one, for example:

(3.1) Just look at all those hungry mouths we have to feed.

In Example 3.1, we refer to the whole body (the person) with the name
of a part of the body (the mouth). This type of reference shift is system-
atic, because it can occur with anything which has parts. This kind of
metonymy, where a specific part of something is used to refer to the whole,
is called synecdoche, or in Lakoff and Johnson’s terms, PART FOR WHOLE
(henceforth, the name of a certain kind of metonymy is indicated with
small capitals, following Lakoff and Johnson’s designation). Similar sys-
tematic reference shifts can be seen in the following examples:
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(3.2) Denise drank the bottle. (= the liquid in the bottle→ CONTAINER
FOR CONTENTS)

(3.3) Ted played Bach. (= the music of Bach→ ARTIST FOR ARTFORM)

(3.4) Ashe played McEnroe. (= tennis with McEnroe→ CO-AGENT FOR
ACTIVITY)

(3.5) A Mercedes rear-ended me. (= my car→ CONTROLLER FOR CON-
TROLLED)

(3.6) The buses are on strike. (= bus drivers→ OBJECT USED FOR USER)

(3.7) The book is moving right along. (= the writing of the book →
PRODUCT FOR PROCESS)

These are conventional metonymic patterns that operate on semantic
classes [Markert and Nissim, 2007a]. In the case of common nouns, such
regular shifts have also been called regular polysemy.

There are, however, novel metonymies, created on the fly, which can-
not be matched to any pattern:

(3.8) The ham sandwich is waiting for his check.

(3.9) Ask seat 19 whether he wants to swap.

In Example 3.8, the ‘ham sandwich’ refers to a person, who ordered
a ham sandwich in a bar, while in Example 3.9, ‘seat 19’ refers to the
person who is occupying seat 19. These types are called unconventional
metonymies [Markert and Nissim, 2007a].

3.2 Metonymic Proper Names

In most examples mentioned above, it is common nouns that undergo
such reference shifts. Proper names, however, are also likely to occur in
metonymies. Most regular metonymic patterns are specific to one par-
ticular class (here: person, place, or organization names). Nevertheless,
there are some metonymic patterns relevant for all base classes as well.
According to Markert and Nissim [2007a], we call them class-specific and
class-independent patterns, respectively1.

1Section 3.2 is based mainly on the translation of the author’s article [Simon, 2008].
Hungarian examples were adapted to English.
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3.2.1 Class-specific Patterns

Metonymy is “using one entity to refer to another that is related to it”, as
Lakoff and Johnson [1980] define it. Name classes differ in the variety of
relations that may serve as the basis for metonymy. In this regard, person
names seem to be the most complex. For this reason, unlike previously,
we discuss person names only after place and organization names.

Depending on the transparency of the relation between the primary
and the contextual reference, common and innovative metonymic patterns
can be distinguished. Since the extent of transparency is not the same
for everybody, it is hard to be objective in drawing the line between con-
ventional and unconventional metonymies. Therefore, the subsequent list
of metonymy categories is not exhaustive: we take into account only the
main classes mentioned in the literature [Markert and Nissim, 2007a,b;
Lakoff and Johnson, 1980; Simon, 2008].

Place names

Some place names, particularly the names of geo-political entities (coun-
tries, states, provinces, etc.), can refer to a location, as well as to its gov-
ernment, its population, or affiliated organizations. In those cases when
a place name has an agentive role in the sentence, for example when it
makes decisions, has emotions, or causes movement, it is used as a PLACE
FOR PEOPLE metonymy, e.g.

(3.10) the US position on global warming

(3.11) Washington is optimistic

(3.12) the hopeless poverty of Vietnam

A place name can occur in many roles, for example, it can stand for the
official administration of a country (Example 3.10). A subtype of this kind
of metonymy is when the name of the capital stands for the government
(Example 3.11). In Example 3.12, the place name refers to the whole or
majority of the population.

A widely used metonymy is when a place name is used referring to a
sports team affiliated to the place, e.g.

(3.13) two penalty goals by Donaldson preceded France’s fifth try
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However, this is rather a metonymy chain [Reddy, 1979], because the
place name stands for an organization which has members (see ORGANI-
ZATION FOR MEMBERS metonymy below).

Even though PLACE FOR PEOPLE is the most frequent metonymy type
in which place names occur, a few other types also exist. One of them is
PLACE FOR EVENT, when a location name stands for an event that took
place there (Example 3.14). Another one is the PLACE FOR PRODUCT
metonymy, in that a place name is used for referring to a product man-
ufactured in the place (Example 3.15).

(3.14) British communists disillusioned with the Soviet Union after
Hungary

(3.15) a smooth Bordeaux that was gutsy enough to cope with our food

Organization names

Similarly to place names, organization names can also refer not only to
their primary reference, but also to other references related to it. The
most frequent type is ORGANIZATION FOR MEMBERS, especially when a
spokesperson acts or speaks on behalf of a group or an organization (Ex-
ample 3.16), but it also includes cases where all members of the organiza-
tion participate in an action (Example 3.17).

(3.16) Renault sign recycling pact

(3.17) Microsoft is writing Windows NT not only for the Intel processor,
but for others as well

Organizations typically have a location, so organization names may
also stand for the facility that houses them or one of their branches. This
is called ORGANIZATION FOR FACILITY metonymy (Example 3.18). An or-
ganization may have a value on the stock market, its stock index, to which
the name of the organization may also refer: this is the ORGANIZATION
FOR INDEX metonymy (Example 3.19).

(3.18) around Tesco’s at New Cross

(3.19) Canon slips

Another widely used metonymy is ORGANIZATION FOR PRODUCT,
where the name of a commercial organization refers to its products (Exam-
ple 3.20). An organization name can also be used to refer to an event asso-
ciated with it, this is called ORGANIZATION FOR EVENT (Example 3.21).
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(3.20) Tweed may decide to switch that BMW for something else

(3.21) in its Philip Morris decision in November 1987, the Court held
that...

Person names

As can be seen from the examples of metonymies involving place and or-
ganization names, metonymies are based on the relation between the pri-
mary and the contextual reference. As organizations can have location
or stock index, persons can have many properties which stand in some
relation to them. However, persons and their properties are more com-
plex than organizations, which is probably the reason why person names
usually do not undergo a reference shift in general, but in particular roles,
e.g. as an artist, or as a co-agent, as it can be seen in Examples 3.3 and 3.4,
respectively. Similarly, the CONTROLLER FOR CONTROLLED metonymy
can also be used with a person name:

(3.22) Napoleon lost at Waterloo.

Radden and Kövecses [1999] call relationships which may give rise to
metonymy “metonymy-producing relationships”. Such relationships can
be: possessing an object, living in a place, being a member of a group,
having a particular property, etc.

(3.23) Peter is parked on the opposite side of the street

(3.24) the French hosted the World Cup Soccer Games

(3.25) every Tom, Dick and Harry

(3.26) he is a Judas

Enumerating metonymy-producing relationships for person names
could be continued almost indefinitely, but the examples would be far
from being conventional metonymies. They rather seem to be examples
of innovative language usage.

3.2.2 Class-independent Patterns

Class-independent patterns can be applied to all types of proper names,
and even to most nouns. All names can be used as mere signifiers, in-
stead of referring to an object: this metonymic pattern is called OBJECT
FOR NAME.
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(3.27) Chevrolet is feminine because of its sound

This is a classic example of meta-linguistic usage: in Example 3.27,
‘Chevrolet’ refers to the word ‘Chevrolet’, as in the last clause we referred
to the word used in the example. (According to our assumption, the con-
fusion in terminology around unique reference mentioned in Subsection
2.3.1 is caused by this metonymy being widely used in the literature.)

Another class-independent metonymy type is OBJECT FOR REPRESEN-
TATION, when a proper name refers to a representation (a photo or paint-
ing) of the reference of its literal reading. Example 3.28 is metonymic only
if somebody is just pointing to a map: in this case ‘Malta’ refers to the
drawing of the island.

(3.28) this is Malta

3.2.3 Unconventional Metonymies, Mixed Readings

Unconventional metonymies are non-predictable and context-dependent.
No specific category indicating the intended class can be introduced,
therefore they do not fit into any of the patterns mentioned above.

(3.29) the bottom end is very New York/New Jersey and the top is very
melodic

(3.30) funds for Operation Shakespeare had been paid into Barclays
Bank

In Example 3.29, the location name refers to typical local tunes, while in
Example 3.30, the organization name is used as referring to an account at
the bank. Both are used rarely, and the comprehension of such expressions
highly depends on the context. They are more idiosyncratic than produc-
tive patterns, so they can be said to be examples of innovative, novel lan-
guage use (cf. Subsection 3.2.1).

In addition to literal and metonymic readings, there are examples
where two predicates are involved, each inducing a different reading, re-
sulting in mixed reading. This occurs often with coordinations and apposi-
tions.

(3.31) countries paying money to users of contraception: Bangladesh,
Egypt, ...

(3.32) BT, Britain’s main telephone company, announced a 36% fall
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In Example 3.31, country names have mixed reading: on the one hand,
it is a PLACE FOR PEOPLE metonymy, where the word ‘countries’ refers
to the official administration of the countries, and Bangladesh and Egypt
are some of these countries. On the other hand, due to the construction
where ‘Bangladesh’ and ‘Egypt’ are items in the list of countries, they have
a simple literal reading. In Example 3.32, ‘BT’ refers to a spokesperson
who made an announcement, thus it is an ORGANIZATION FOR MEMBERS
metonymy. However, ‘BT’ and ‘Britain’s main telephone company’ are in
apposition, the latter defining the former. Because of this kind of defini-
tion, ‘BT’ may even have a literal reading.

3.3 Metonymy Resolution in NLP

As our overview of metonymic proper names shows, NEs are ambiguous
referential elements of discourse. Metonymic usage of NEs is frequent in
natural language, therefore the resolution of metonymic NEs would be a
direct benefit to NER and indirectly to all NLP tasks that require NER. The
importance of resolving metonymies has been shown for a variety of NLP
tasks, such as MT [Kamei and Wakao, 1992], question answering [Stallard,
1993], anaphora resolution [Markert and Hahn, 2002], and IR [Leveling
and Hartrumpf, 2006].

However, metonymy is known to be difficult for NLP for the simple
reason that conceptual mappings between related references are not linked
to particular linguistic forms. Thus, classic compositional semantic anal-
yses using a static lexicon are inadequate in the case of metonymic NEs,
since the latter often deal with word senses that are not listed in the lexi-
con.

Early works, lacking corpora annotated for metonymy, are based on
largely manually constructed example lists, and are therefore often bi-
ased to make a particular point of interest (e.g. Lakoff and Johnson
[1980]; Pustejovsky [1995]). First attempts on computational resolution of
metonymies are mostly based on inference rules (e.g. Fass [1988]). Work
in this vein takes the view that figurative language processing should not
be approached as a language related phenomenon, but as a problem for
a general reasoning ability. The lack of language resources is the main
cause that early computational works are evaluated in comparison to con-
structed examples only (e.g. Fass [1988]; Hobbs et al. [1993]), or, though us-
ing naturally-occurring data, based on subjective intuition (e.g. Harabagiu
[1998]; Stallard [1993]). Results are thus hardly comparable as they all op-
erate within different frameworks.
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Markert and Nissim [2002] postulate metonymy resolution as a class-
based WSD task for the semantic class of locations, and later for the class
of organizations as well [Markert and Nissim, 2007a]. Their works were
later extended to form a SemEval-2007 shared task [Markert and Nis-
sim, 2007b], for which metonymically annotated datasets were provided.
Many NLP tasks have benefitted enormously from shared task evalua-
tions, competitions which have significantly improved the state-of-the-art.
The situation is similar in the case of the metonymy resolution task: the ex-
istence of a reference dataset gave great impetus to the creation of a wide
variety of metonymy resolution systems.

Since the possible interpretations of a potentially metonymic word
(PMW) can be viewed as corresponding to the word’s possible senses,
metonymy resolution can be interpreted as a classification task, for which
supervised machine learning techniques can be used. Participants of the
shared task and later users of the SemEval dataset use a range of super-
vised learning paradigms, e.g. maximum entropy [Farkas et al., 2007], de-
cision trees [Nicolae et al., 2007], and Support Vector Machines (SVMs)
[Ferraro, 2011]. Most systems use shallow features extracted directly from
the training data (parts-of-speech, co-occurrences, and collocations), and
morphological and syntactic features. Almost all systems use external re-
sources: lexical databases, such as WordNet [Farkas et al., 2007; Nastase
and Strube, 2009], other corpora [Brun et al., 2007] or the Web as corpus
[Farkas et al., 2007], or encyclopedic knowledge extracted from Wikipedia
[Nastase and Strube, 2009; Judea et al., 2012].

3.3.1 SemEval-2007 Metonymy Resolution Task Descrip-
tion

Here we give a short overview of the metonymy resolution shared task of
SemEval-2007. We only provide information that is needed for the inter-
pretation of our results shown in Subsection 3.3.2. For more details see the
task description paper by Markert and Nissim [2007b].

The dataset consists of samples extracted from the British National
Corpus (BNC), Version 1.0. Samples contain four sentences: the sentence
in which the PMW occurs, two before, and one after.

The shared task focused on two NE classes, location and
organization, each corresponding to a subtask. For both subtasks, ran-
dom subsets of samples were selected as training and test datasets.

Metonymy annotation was performed by using categories of con-
ventional metonymies described in Subsection 3.2.1. Class-independent
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metonymic readings (see Subsection 3.2.2) were applied for both location
and organization names. In addition, instances of mixed readings and un-
conventional metonymies (see Subsection 3.2.3) were also annotated (the
latter as othermet). The reading distribution of training and test sets for
both subtasks are shown in Tables 3.1 and 3.2. Percentages are provided
by Ferraro [2011]. Readings are sorted according to their frequency.

reading train test

literal 737 (79.68%) 721 (79.41%)
place-for-people 161 (17.41%) 141 (15.53%)
mixed 15 (1.62%) 20 (2.20%)
othermet 9 (0.97%) 11 (1.21%)
place-for-event 3 (0.32%) 10 (1.10%)
object-for-name 0 (0%) 4 (0.44%)
place-for-product 0 (0%) 1 (0.11%)
object-for-representation 0 (0%) 0 (0%)

total 925 908

Table 3.1: Reading distribution for locations in the SemEval-2007 datasets.

In addition to metonymy annotation, several types of linguistic anno-
tation were also provided by the organizers for both training and test sets.
This included the BNC tokenization, part-of-speech (POS) tags, and man-
ually annotated dependency relations for each PMW.

The location and organization subtasks were further divided into three
subtasks of different granularity levels, resulting in six subtasks for which
participants were allowed to submit their results. The fine-grained evalu-
ation aimed at distinguishing between all categories, while the medium-
grained evaluation grouped different types of metonymic usage together
and addressed literal/mixed/metonymic usage. The coarse-grained sub-
task was in fact a literal/non-literal two-class classification task.

For each target category, precision, recall and F-measure (β = 1) were
counted. (For more details on the standard evaluation methods, see Sub-
section 5.3.1.) As a baseline method, assignment of the most frequent cat-
egory label (literal) was used for each subtask.
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reading train test

literal 690 (63.30%) 520 (61.76%)
org-for-members 220 (20.18%) 161 (19.12%)
org-for-product 74 (6.79%) 67 (7.96%)
mixed 59 (5.41%) 60 (7.12%)
org-for-facility 15 (1.38%) 16 (1.90%)
othermet 14 (1.28%) 8 (0.96%)
object-for-name 8 (0.73%) 6 (0.71%)
org-for-index 7 (0.64%) 3 (0.36%)
org-for-event 2 (0.18%) 1 (0.12%)
object-for-representation 1 (0.09%) 0 (0%)

total 1090 842

Table 3.2: Reading distribution for organizations in the SemEval-2007
datasets.

3.3.2 GYDER: System Description

We built a maximum entropy metonymy resolution system, named GY-
DER (the acronym was formed from the initials of the authors’ first
names), which was submitted to the SemEval-2007 metonymy resolution
shared task, and achieved the highest scores. In the subsequent descrip-
tion we discuss feature engineering and present our results2.

GYDER uses the same maximum entropy toolkit as our general-
purpose NER system does3, setting Gaussian prior to 1. Due to the small
number of instances and features, the learning algorithm always con-
verged before 30 iterations, so the evaluation process only took seconds.
(For more details on our general-purpose NER system, see Chapter 5. That
chapter discusses maximum entropy learning, as well as Gaussian prior,
iteration, and further issues concerning supervised machine learning.)

We also tested the classic C4.5 decision tree learning algorithm [Quin-
lan, 1993], but our early experiments showed that the maximum entropy
learner was consistently superior to the decision tree classifier for this task,
yielding about 2-5% higher accuracy scores on average in all of the sub-
tasks (on the training set, using cross-validation).

2This subsection is based mainly on our article published in SemEval proceedings
[Farkas et al., 2007].

3http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html
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Feature engineering

We tested several features describing orthographic, syntactic, or seman-
tic characteristics of PMWs. We mainly followed Nissim and Markert
[2005], who reported three classes of features as being the most relevant for
metonymy resolution: the annotation of dependency relations, the type of
the PMW’s determiner, and the plurality of the PMW. We also report on
some features that did not work.

We used dependency information in several ways. The simplest one was
using the type of dependency relation and the word form of the related
word as features assigned to the PMW (in the case there were more related
words, each of them became a feature). As determined by evaluation on
the test set, adding the type of dependency relation as a feature caused sig-
nificant improvement in the organization subtask and slight improvement
in the location subtask.

To overcome data sparseness, using features which generalize from in-
dividual words seemed useful as well. Three different methods were used
to achieve this, each incorporating the information of dependency rela-
tions.

After analysing metonymic occurrences of NEs in the training dataset,
we conclude that metonymic usage is usually induced by the predicate
on which the PMW depends. First, we manually collected a list of trig-
ger words that are likely to appear close to the PMW. Each indicator word
was assigned to one of several semantic subclasses, which were created
based on the annotation guidelines provided by the organizers. For ex-
ample, verbs like ‘announce’, ‘say’, ‘declare’ are members of the semantic
subclass of communication actions, which is typical of the ORGANIZATION
FOR MEMBERS metonymy. If the PMW’s predicate appeared in the list, its
semantic subclass was assigned to the PMW as a feature. This is the only
resource in our final system that was manually built. When measuring
performance on the test set, omitting this feature did not change the accu-
racy in the organization subtask and decreased accuracy by 0.44% in the
location subtask.

Second, we used Levin’s verb classes [Levin, 1993] to generalize words
of the most relevant dependency relations (subject and object). The added
feature was the number representing the class automatically extracted
from Levin’s verb classification index4. Unfortunately, this feature only
caused insignificant improvement.

Third, we gathered the hypernym path from WordNet [Fellbaum, 1998]

4http://www-personal.umich.edu/∼jlawler/levin.html
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for each related word’s sense #1. Based on these paths, synsets whose
tree contained a node that frequently indicated metonymic sense were col-
lected. If the word appeared in one of the collected subtrees, it received
this kind of feature.

Following Nissim and Markert [2005], we distinguished between def-
inite, indefinite, demonstrative, possessive, wh and other determiners. We
also marked cases where the PMW was sentence-initial, and thus neces-
sarily determinerless. However, without complete syntactic analysis, as-
signing determiners to PMWs was not straightforward. After some exper-
iments, we decided to link the closest determiner and the PMW together
in those cases when only adjectives, if anything, were found between them
in the sentence. This feature was only useful for the resolution of organi-
zation PMWs.

The plurality feature was particularly useful to find instances of the OR-
GANIZATION FOR PRODUCT metonymy. To decide whether a PMW is in
plural form, we used the web as corpus. For each PMW ending with the
letter ‘s’, two Google queries were run: one for the complete word form,
and one for the word without its last character. If the number of hits for
the shorter form was significantly higher than one for the complete form,
the plurality feature was assigned to the PMW5.

Additionally, we included the surface form of the PMW as a feature.
Cross-validation on the training corpus showed that the use of this feature
causes a 1.5% improvement in F-measure for organizations and a slight
decrease for locations, so it was used only for the organization subtask.
Our decision was confirmed by the results on the test set as well.

During development, we used random five-fold cross-validation on
the training dataset to determine the usefulness of each feature (see Sub-
section 5.3.1 for details on cross-validation). A few of them was proved
to be unsuccessful features, and were not included in the submitted system.
Their list is as follows: automatically collected words which frequently ap-
pear close to metonymic PMWs in the training dataset, NE labels assigned
by a state-of-the-art NER system [Szarvas et al., 2006b], POS tags around
PMWs, capitalization and other surface characteristics for the PMW and
nearby words, and the inflectional category of the verb closest to the PMW
in the sentence.

5This feature and similar web-as-corpus approaches for lemmatization of NEs are de-
tailed in one of the co-authors’ PhD thesis [Szarvas, 2008]
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Results

The assigment of the most frequent category label (literal) to every
PMW in the training dataset can serve as a baseline when evaluating the
system (baseline1 in Table 3.3, cf. training dataset percentages in Tables
3.1 and 3.2). As another baseline, we evaluated the system without the
WordNet, Levin, trigger, and PMW word form features (baseline2 in Table
3.3). This baseline system is quite similar to that described by Nissim and
Markert [2005], so we get the discriminative power of our four new fea-
tures. Table 3.3 shows the results (F-measure) of the baseline systems and
our submitted system on the fine granularity level.

run baseline1 baseline2 submitted

org train 5-fold 63.30 77.51 80.92
org test 61.76 70.55 72.80

loc train 5-fold 79.68 85.58 88.36
loc test 79.41 83.59 84.36

Table 3.3: Results of the baseline systems and our submitted system on the
fine granularity level.

For the medium and coarse subtasks of the location domain, we
simply generalized the fine-grained results, i.e. the counts of classes
place-for-x and othermet (and mixed on the coarse level) were
summed. In the organization domain, we merged the fine-grained classes
into one metonymic class before training. Overall F-measure for each do-
main/granularity can be seen in Table 3.4. In general, coarse-grained eval-
uation did not show a significantly higher performance, proving that the
main difficulty is distinguishing between literal and metonymic usage, not
separating metonymy types from each other. Thus, data sparseness re-
mained a problem for coarse-grained classification as well.

coarse medium fine

location 85.24 84.80 84.36
organization 76.72 73.28 72.80

Table 3.4: Overall F-measure of the GYDER system for each domain/
granularity.
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Per-class results (precision, recall, F-measure) of the submitted sys-
tem for location and organization domains are shown in Tables 3.5
and 3.6. In the location subtask, our system never predicted values
for the four small classes place-for-event, place-for-product,
object-for-name, and other, as these had only 12 instances altogether
in the train dataset. Since our system’s performance on the mixed cat-
egory also remained low, we decided to simplify the location subtask as
a binary classification task between literal and place-for-people
categories. Results are similar in the organization subtask: while
the system ignored three of the smallest categories othermet,
organization-for-index, and organization-for-event (a total
of 12 instances), we achieved meaningful results for the six major cate-
gories. (The class object-for-representation remained undefined
in both location and organization subtasks, since it has only one instance
altogether in the train and test set, and none of the submitted systems
could produce results for it.)

reading # prec rec f

literal 721 86.83 95.98 91.17
place-for-people 141 68.22 51.77 58.87
mixed 20 25.00 5.00 8.33
othermet 11 - 0.0 -
place-for-event 10 - 0.0 -
object-for-name 4 - 0.0 -
place-for-product 1 - 0.0 -

Table 3.5: Per-class results of the GYDER system for location domain.

Conclusions

Tables 3.5 and 3.6 show results for all classes sorted by F-measure. Com-
paring them with Tables 3.1 and 3.2, which show the reading distribution
for each class sorted by frequency, it can be seen that the order is very
similar. Thus, several categories do not contain a sufficient number of ex-
amples for machine learning. For this reason, we decided early to accept
the fact that these categories will not be learned and to concentrate on
those classes where learning seemed feasible. After simplifying the task in
such a way, data sparseness still remained a problem. It can be eased by
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reading # prec rec f

literal 520 75.76 90.77 82.59
org-for-members 161 65.99 60.25 62.99
org-for-product 67 82.76 35.82 50.00
mixed 60 43.59 28.33 34.34
object-for-name 6 50.00 16.67 25.00
org-for-facility 16 100.0 12.50 22.22
othermet 8 - 0.0 -
org-for-index 3 - 0.0 -
org-for-event 1 - 0.0 -

Table 3.6: Per-class results of the GYDER system for organization domain.

application of several generalization approaches, like grouping words im-
plicating metonymic usage into semantic subclasses, as we did using the
Levin and trigger features. Poibeau [2007] follows a similar way of reduc-
ing search space size, but with a different approach, collecting patterns for
separating literal usage of NEs from metonymic readings.

The maximum entropy method and the features we selected performed
well enough to achieve the best scores in all six subtasks of the shared
task, as can be seen in Table 3.7 reporting F-measure for all participating
systems. Our four new features (WordNet, Levin, trigger and the PMW’s
word form) proved to be discriminative features for metonymy resolution,
as indicated by results in Table 3.3, and we believe they are useful in gen-
eral.

baseline FUH UTD-HLT-CG XRCE-M GYDER up13

loc-coarse 79.4 77.8 84.1 85.1 85.2 75.4
loc-medium 79.4 77.2 84.0 84.8 84.8 75.0
loc-fine 79.4 75.9 82.2 84.1 84.4 74.1

org-coarse 61.8 - 73.9 73.2 76.7 -
org-medium 61.8 - 71.1 71.1 73.3 -
org-fine 61.8 - 71.1 70.0 72.8 -

Table 3.7: Results of all participating systems for all subtasks.

To prove the usefulness of our features, we collected some results
which have been published since the SemEval-2007 shared task.
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Nastase and Strube [2009] use three types of features. First, they take
the minimum set of necessary features presented by Nissim and Markert
[2005]. Second, following the generalization approach taken by us and
other participating teams, they use WordNet and the page and category
network of Wikipedia to assign supersenses to PMWs. Third, our observa-
tion that using the word form of PMWs as features leads to improvement
in determining the reading for organization names, and the observation of
Brun et al. [2007] that certain locations are more likely to be used with an
event reading than other locations, lead them to mine for certain pieces of
information in Wikipedia relations, and to add them as features for PMWs.

Ferraro [2011] uses syntactically and semantically based features as
well. The former is very similar to Nissim and Markert’s features [Nis-
sim and Markert, 2005], while the latter consist of WordNet relations and
a word-scoring function aimed at extracting the underlying conceptual
meaning of PMWs. He tested several learning algorithms, concluding that
SVMs provide the most predictive power, so it was used to evaluate his
system on the SemEval-2007 test dataset.

Judea et al. [2012] provide a method for the derivation of distributional
semantic representations based on Wikipedia and WikiNet. The resource
obtained was evaluated through metonymy resolution.

task ↓ / system→ Nastase-Strube Judea et al. Ferraro GYDER

loc-coarse 86.1 - 83.4 85.2
loc-medium 85.9 85.6 82.5 84.8
loc-fine 85.0 - 82.0 84.4

org-coarse 74.9 - 75.5 76.7
org-medium 72.4 72.0 69.9 73.3
org-fine 71.0 - 69.0 72.8

Table 3.8: Results of systems which have been published since the Sem-
Eval-2007 shared task, compared to GYDER’s scores.

Table 3.8 summarizes the results of the systems described above.
(Judea et al. [2012] did not provide results on the coarse and fine gran-
ularity level.) The highest F-measure for each subtask is in bold type. In
the location subtask, the systems of Nastase and Strube [2009] and Judea
et al. [2012] outperform GYDER, but in the organization subtask our scores
are still the highest.
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3.4 Conclusion

Metonymy is using one word to refer to another that is related to it. As
can be seen from our overview, some NEs are also likely to occur in
metonymies. Although the relation between the primary and the contex-
tual reference is not completely transparent, we made a distinction be-
tween conventional and unconventional metonymies, based mainly on
Markert and Nissim [2007a]. In the case of the former, reference shift is ap-
plied for a semantic class, in our case for location and organization names.
Metonymies of the latter type are rather examples of novel, innovative
language use, which are hard to recognize for both human annotators and
NLP systems.

Based on the results of our supervised metonymy resolution sys-
tem, we can conclude that the main borderline does not lie between
conventional and unconventional metonymies, but rather between lit-
eral and metonymic usage. Our system did not emit any labels for the
othermet category, either for locations or organizations. Moreover, it
did not emit labels for classes with a small number of instances, such as
place-for-event or organization-for-index. The identification
of metonymies is based more on their frequency than on any other prop-
erties.

Our system provided the best results for metonymic classes which
are journalistic cliches, such as organization-for-members and
place-for-people, incorporating PLACE FOR SPORTS TEAM and CAPI-
TAL FOR GOVERNMENT metonymies. Instances of these classes cover most
of metonymic NEs, particularly in newswire. We therefore believe that the
metonymy resolution task should be simplified as a task of recognizing
literal readings and journalistic cliches. This type of classification would
directly benefit NER and indirectly all NLP tasks that require NER.

Supervised systems have two main disadvantages: they do not al-
low the recognition of new classes besides those pre-defined, and they
require a large amount of texts annotated with specific linguistic informa-
tion. Thus, approaching the metonymy resolution task with supervised
systems for recognizing new metonymy types does not work. Since con-
ceptual mappings between related references of metonymic words are not
linked to particular linguistic forms, corpora with rich semantic annota-
tion is needed for the task. Although using some surface and syntactic
information leads to improvement in resolving metonymies, future sys-
tems should exploit more semantic knowledge, or the power of a larger
dataset, or preferably both.
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Chapter 4

Gold and Silver Standard Corpora
for Named Entity Recognition

The statistical approach to NLP requires large amounts of text, i.e. cor-
pora. A corpus is “a collection of pieces of language text in electronic form,
selected according to external criteria to represent, as far as possible, a
language or language variety as a source of data for linguistic research”
[Sinclair, 2005]. Machine learning algorithms typically learn their parame-
ters from corpora, and systems are evaluated by comparing their output to
another part of the corpus, or to another corpus. Corpora can be classified
according to various criteria, including:

a. source: written, spoken, or originally in electronic format;

b. domain: newswire, academic, literature, etc.;

c. language: monolingual (e.g. English), bilingual (e.g. English–
Hungarian), or multilingual;

d. location: e.g. the English of UK, the US or Canada;

e. date: e.g. codices from the Old Hungarian period, or present-day
standard Hungarian.

To be a gold standard corpus, a dataset must meet ideally all, but at
least most of the following requirements. In the case of dead languages
or highly specialized sublanguages, it must be exhaustive. In the case of
living languages, a corpus cannot be exhaustive, but it must aim for rep-
resentativeness, which can be ensured by balanced sampling of sources
and/or domains of the text. It must be split into language units, for exam-
ple sentences and tokens, depending on the task it is intended to be used
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for. Some linguistic information must be assigned to each language unit
as annotation. The annotation must be done or at least corrected by hu-
man annotators following the rules of some annotation guidelines. Gold
standard corpora usually have pre-defined size, since continuous manual
annotation is not feasible.

A silver standard corpus, or at least the annotation in it is automatically
generated, without any human intervention. For this reason, it is extend-
able with new texts and/or annotation levels, and is not restricted in size.
Automatically generated corpora can be quite useful for improving per-
formance of NLP systems in several ways.

In this chapter, we first give an overview of corpus building in general,
see Section 4.1. In Section 4.2 we introduce the gold standard datasets used
regularly in the field of NER. Since gold standard corpora used in NER are
in most cases highly domain specific, containing mostly newswire text,
and are restricted in size, in Section 4.3 we present a way of automatically
generating NE tagged corpora as an efficient alternative of gold standard
corpora.

4.1 Corpus Building

In this section, we give a brief overview of the main issues concern-
ing corpus building. There are excellent textbooks on corpus linguistics,
e.g. McEnery and Wilson [2001]; Lüdeling and Kytö [2008]; O’Keeffe and
McCarthy [2010], to mention only a few, so we direct the reader to them
for more complete discussions.

The very first step of corpus building is determining corpus design: in-
tended uses of the corpus, the language variety to be covered, the do-
main(s) to be represented, the required size, and the future access of the
corpus. The last criterion is of key importance in text collection, if one
intends to build a corpus that is freely accessible, at least for research pur-
poses. In addition to the effort put in data processing, a considerable
amount of time has to be devoted to acquiring texts and clearing copy-
rights. The data collection process and negotiations on Intellectual Prop-
erty Rights (IPR) matters may drag on for months. In corpus linguistics
textbooks, issues of data collection and more specifically copyright clear-
ance are hardly touched upon. However, there are a few current attempts
at improving the state-of-affairs, e.g. Clercq and Perez [2010]; Xiao [2010].

A corpus is a well-organized collection of data, “collected within the
boundaries of a sampling frame designed to allow the exploration of cer-
tain linguistic feature (or set of features) via the data collected” [McEnery,
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2004]. If the object of study is a highly restricted sublanguage or a dead
language, identifying the texts to be included in the corpus is straightfor-
ward. For example, when constructing the Old Hungarian corpus [Simon
et al., 2011; Simon and Sass, 2012], we had to acquire all available sources
from the Old Hungarian period (896–1526), creating a corpus of fixed size
(approx. 2 million tokens). However, moving forward in the history of
the Hungarian language, after the time of Gutenberg’s invention of the
printing press, the amount of textual sources increases to the point where
including all of them in a corpus seems impossible. In such cases, a sam-
pling frame is of crucial importance. The corpus should aim for balance
and representativeness within a specific sampling frame, in order to allow
a particular variety of language to be studied.

The issue of representativeness is one of the most frequently discussed
questions of corpus design (e.g. Biber [1993]). However, attempting to
reach representativeness is like shooting at a moving target. Quoting Hun-
ston [2008]: “representativeness is the relationship between the corpus
and the body of language it is used to represent”. But what do we know
about the body of language? Getting information about the language is the
very reason why we build corpora. Maybe it is easier to give examples of
unrepresentativeness. If one wants to build a representative general-aim
corpus of present-day standard Hungarian, collecting only blogs about
sports will not be enough. Or citing McEnery’s example [McEnery, 2004]:
imagine that a researcher decides to construct a corpus to assist in the task
of developing a dialogue manager for a telephone ticket selling system.
This researcher will not sample the novels of Jane Austen or movie subti-
tles to cover the language usage of phone dialogues. Thus, representative-
ness is a goal we can aim for, without being convinced that we will reach
it.

The first phase of corpus building work starts with the acquisition of
source data. In the case of written texts, there are three methods to achieve
this. In the most fortunate case, the corpus consists of texts which are
available electronically, in some machine-readable format. If a source is
only available in print, digitization is necessary in the form of mainly man-
ual scanning followed by a conversion process from the scanned images
into regular text files aided by optical character recognizer software. This
step involves extensive manual proofreading and correction to ensure ini-
tial resources of good quality as input to further computational process-
ing. The third method is typing up text by hand, which is usually avoided
unless the texts concerned are not available in any other way. This is the
case, for example, with old manuscripts, handwritten letters, or codices
[Oravecz et al., 2010].
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McEnery and Wilson [2001] describe annotated corpora as being “en-
hanced with various types of linguistic information”. The development of
annotation, which is more or less prototypical in modern language corpora,
requires a number of standard NLP tasks: sentence segmentation and to-
kenization, morphological analysis and morphosyntactic disambiguation.
These basic processing steps are usually carried out automatically, since
tokenizers, sentence splitters and POS taggers are reliable enough for cer-
tain languages such as English and Hungarian that a wholly automated
annotation is feasible. Error rates associated with taggers are low, typically
reported at around 3 percent. For example, the automatic morphosyntac-
tic annotation in the Hungarian National Corpus reaches a general preci-
sion of about 97.5%, i.e. 2.5% of all wordforms has an erroneous analysis
[Váradi, 2002]. Higher precision could only be achieved by manual anno-
tation, which is usually not feasible for large amounts of data.

More typically, however, NLP tools are not sufficiently accurate so as to
allow for fully automated annotation. In these cases, semi-manual or fully
manual annotation is required. For building a highly accurately annotated
corpus, first the annotation scheme has to be developed, then annotation
guidelines have to be taught to the annotators. The more elaborated the
guidelines, the cleaner and more useful the corpus as long as the guide-
lines remain teachable, but when they become too complex, annotators
begin to perform at an unacceptably high error rate. Guidelines have to
define the annotation task, enumerate the types of language units to an-
notate, and give examples of what to annotate and what not to annotate.
(For examples of annotation guidelines for the NER task, see Section 2.1.)

As we proceed in enriching the corpus with linguistic annotation from
the basic processing steps to more difficult semantic annotation levels, it
will be clear that the more linguistic and semantic knowledge is required,
the more liquid the annotation process gets. There are some linguistic phe-
nomena which are hard to define, as can be seen in the case of NEs (see
Chapter 2) and metonymies (see Chapter 3). If the guidelines are not accu-
rate enough, such linguistic phenomena will be identified and categorized
based on intuitions of the annotators. This strategy may be unproblematic
for very clear-cut classes, but an exhaustive annotation will confront the
researcher with many cases that are not clear-cut. In such cases, inter-
annotator agreement is usually measured. The most simple measure is the
joint probability of agreement:

2 ∗ |identically tagged entities|
|entities tagged by annotator A|+ |entities tagged by annotator B|
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This formula was used for calculating inter-annotator agreement in the
case of finding and labelling metaphorical expressions in a corpus we built
for a study of literal versus metaphorical language use [Babarczy et al.,
2010b]. At the first attempt, inter-annotator agreement was only 17%. Af-
ter refining the annotation instructions, we made a second attempt, which
resulted in an agreement level of 48%, which is still a strikingly low value.
These results indicate that the definition of metaphoricity is problematic
in itself, and that the refinement of annotation guidelines results in a more
accurate annotated dataset. Contrary to finding metaphorical expressions,
recognizing NEs in texts usually results in much higher inter-annotator
agreement, mostly above 90%.

However, the joint probability of agreement does not take into account
that agreement may happen solely based on chance. For this reason, other
coefficients such as Cohen’s κ and Krippendorff’s α are traditionally more
often used in CL [Artstein and Poesio, 2008]. The strength of agreement is
said to be perfect above 0.8 κ value, according to Landis and Koch [1977].

When building a gold standard corpus, researchers aim for as high
inter-annotator agreement as possible, so samples whose annotation can-
not be agreed on are often excluded from the corpus (e.g. Markert and Nis-
sim [2007b]), resulting in clean and noiseless corpora. NLP has been pre-
dominantly focused on relatively small and well-curated datasets; there
are, however, new emerging attempts at processing data in non-standard
sublanguages such as the language of tweets, blogs, social media, or his-
torical data. In these NLP tasks, models based on cleaned data do not
perform well, so researchers started using collaboratively constructed re-
sources to substitute for or supplement conventional resources such as lin-
guistically annotated corpora.

4.2 Gold Standard Corpora for Named Entity
Recognition

This section presents gold standard corpora used in the field of NER, ex-
amining aspects such as types of entities covered, domains preferred, lan-
guages supported, and size. We do not claim this overview to be exhaus-
tive, rather, we focus on corpora available for English (since these have
received the greatest attention in the NER research) and Hungarian (since
our research activity was mostly concerned with them). For English, we
discuss freely available datasets which were built for shared tasks and be-
came the major standards in NER: MUC-7 [Chinchor, 1998b] and CoNLL-
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2003 [Tjong Kim Sang and De Meulder, 2003] datasets. As for Hungarian,
we examine the Szeged NER corpus [Szarvas et al., 2006a] and the Crim-
inal NE corpus1, and finally say a few words about the HunNer corpus
[Simon et al., 2006].

4.2.1 The Entity Type Factor

One of the main properties of corpora is the annotation scheme they fol-
low, which determines the range of NE types annotated in them. Since
Section 2.1 gives an overview of annotation schemes applied in the NER
task, here we only mention some approaches and show the difference be-
tween the major annotation schemes.

As discussed in Chapter 3, some NEs may have metonymic readings
in certain contexts, which raises certain questions even at the level of an-
notation. There are two approaches to follow. First, one can always tag a
NE according to its contextual reference. In this case, the ‘White House’ in
Example 4.1 would be tagged as an organization name. This rule is called
Tag for Meaning, and is applied e.g. by LDC in the LCTL project [Linguistic
Data Consortium LCTL Team, 2006].

(4.1) the White House announced...

The second approach is called Tag for Tagging, when NEs are always
tagged according to their primary reference, regardless of the context. Fol-
lowing this rule, the ‘White House’ in Example 4.1 would be tagged as a
location name. Most of the major annotation schemes use this rule. A com-
bination of the two approaches is probably the best solution, namely an-
notating metonymic cases with tags which provide information about the
primary reference as well as the contextual reference (here, LOC:ORG). The
creators of the Criminal NE corpus built two annotated versions of the cor-
pus: one following the Tag for Meaning rule, and the other one according
to the Tag for Tagging approach. This solution offers the possibility of han-
dling metonymicity at higher processing levels, e.g. in anaphora resolu-
tion, while provides interoperability between various annotation schemes.

As shown in Section 2.1, several different annotation schemes exist in
the field of NER. The MUC-6 standard uses tags for person, organization,
and location names, date and time expressions, monetary values and per-
centages. In addition to them, MUC-7 introduces the Measure tag. The
CoNLL NER shared tasks of 2002 and 2003 focused on marking tags for

1http://www.inf.u-szeged.hu/rgai/nlp?lang=en&page=corpus ne
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the three basic types (PER, LOC, ORG), and MISC. LDC, in its LCTL project,
also tags titles beyond the basic categories. More recent works, aiming at
higher level processing tasks, expanded it into fine-grained categorical hi-
erarchies. BBN categories [Brunstein, 2002] are used for question answer-
ing and consist of 29 types and 64 subtypes. Sekine’s extended hierarchy
[Sekine et al., 2002] is made up of 200 subtypes, while in the ACE annota-
tion scheme [ACE, 2008] seven types and 43 subtypes are distinguished.

Researchers attempting to merge these datasets to get a bigger train-
ing corpus are faced with the problem of combining different tagsets and
annotation schemes. Automatically generated corpora also require gold
standard datasets to be evaluated against. In this case, researchers also
have to resolve incompatibility issues. Different tagsets can be merged
only if some tags are removed or mapped to common types.

4.2.2 The Domain Factor

Early works in IE and NER focused on extracting events and concerned
NEs from military reports. Attention then turned to the processing of jour-
nalistic articles. However, the topic of news reports used as training and
test dataset in the first MUCs still remained similar, including terrorist ac-
tivities, airplane crashes and rocket launches. Organizers of more current
shared tasks moved from military to civil topics: the CoNLL datasets con-
sist of newspaper articles, and the ACE evaluation also included several
types of informal text styles such as weblogs and text transcripts from tele-
phone speech conversations.

Although several topics were investigated since then, such as technical
emails [Poibeau and Kosseim, 2001], religious texts and scientific books
[Maynard et al., 2001], the datasets created for these topics are not freely
available, so they cannot serve as reference corpora. Thus, freely available
NE tagged corpora remain highly domain-specific.

The multilingual NER evaluation in MUC-6 was run using training
and test articles from comparable domains for all languages. However,
in MUC-7, organizers changed the domains between the development
and test sets, which caused similar effects across languages. Participants
expressed disappointment upon comparing test scores to development
scores [Chinchor, 1998b]. In recent years, investigating the impact of
domain became one of the major research topics in NER. Experiments
[Poibeau and Kosseim, 2001; Maynard et al., 2001; Ciaramita and Altun,
2005] demonstrated that although any domain can be reasonably sup-
ported, porting a system to new domains remained a major challenge.
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Nothman et al. [2008] evaluated MUC-7 and CoNLL-2003 datasets, and
BBN Pronoun Coreference and Entity Type Corpus [Weischedel and Brun-
stein, 2005] against each other. They used the C&C Maximum Entropy
NE tagger [Curran and Clark, 2003] with default orthographic, contex-
tual, in-document, and first name gazetteer features. After merging the
various tagsets, training and testing was run both with and without the
Miscellaneous category.

with MISC no MISC
CoNLL BBN MUC CoNLL BBN

MUC - - 74.4 51.7 54.8
CoNLL 81.2 62.3 58.8 82.1 62.4
BBN 54.7 86.7 75.7 53.9 88.4

Table 4.1: Cross-domain test results for MUC-7, CoNLL-2003 and BBN
corpora.

As shown in Table 4.1, each set of gold standard training data leads to
significantly higher performance on corresponding test sets (with bold-
face) than on test sets from other sources. The ca. 20-30% decrease in
overall F-measure confirms that the training corpus is an important per-
formance factor. Cross-domain evaluation usually gives low performance
results, as can be seen even from our results of training on a silver stan-
dard corpus automatically generated from Wikipedia, and then testing the
model against newswire gold standard corpora (see Subsection 4.3.4).

4.2.3 The Language Factor

As discussed earlier, IE and NER have been in the focus of numer-
ous open competitions in the USA since the 1990s, primarily organized
by the government-sponsored organizations Defense Advanced Research
Projects Agency (DARPA) and NIST. These competitions have signifi-
cantly improved the state of the art, but their focus has mostly been on the
English language. However, a good proportion of work in NER research
addresses the questions of language independence and multilingualism.

Certain languages are particularly interesting from the point of view of
NER. For example, in German, not only proper names are capitalized, but
every noun, so the capitalization feature does not have as much discrim-
inative power as in English. Besides English, German was also a target
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language of CoNLL-2003, where significantly lower overall F-measures
were reported for the latter [Tjong Kim Sang and De Meulder, 2003]. Some
other feature types become useless in the case of CJKV languages because
of the different writing systems. However, they are well studied, and NER
systems for these languages reach similar scores as the state-of-the-art sys-
tems for English [Merchant et al., 1996]. Most recently, Arabic (e.g. Bena-
jiba et al. [2008]) has started to receive a lot of attention, mainly for political
reasons. For NER systems for other languages see the survey of Nadeau
and Sekine [2007].

As a highly agglutinative language, Hungarian NER also poses its own
challenges. Because of its rich morphology, features based on morphologi-
cal information are quite important. Therefore, a gold standard corpus for
Hungarian NER should contain rich morphosyntactic information.

Mapping standard tagsets and adapting annotation schemes used for
English NER to Hungarian also raises a few issues. There are language
units which are considered NEs by the CoNLL annotation scheme, but
are not considered NEs in Hungarian. These are typically the ones being
on the border between proper names and common nouns, and their us-
age varies from language to language, i.e. the non-prototypical categories
(cf. Section 2.4): names of languages, nationalities, religions, political ide-
ologies; adjectives derived from NEs; names of months, days, holidays;
names of special events and wars.

The first gold standard NE tagged corpus for Hungarian was the Szeged
NER corpus [Szarvas et al., 2006a] created by researchers at the University
of Szeged. It is a subcorpus of the Szeged Treebank [Csendes et al., 2004],
which contains full syntactic annotation created manually by linguist ex-
perts. A significant part of these texts has been annotated with NE class
labels in line with the annotation scheme of the CoNLL-2003 shared task.
The corpus consists of short business news articles collected from Magyar
Távirati Iroda, the Hungarian news agency.

Since the Szeged NER corpus is highly domain-specific, the need
emerged for a large, heterogeneous, manually tagged NE corpus for Hun-
garian, which could serve as a reference corpus for training and testing
NER systems. The HunNer corpus [Simon et al., 2006] project started as
a consortial project with researchers from the University of Szeged, the
Research Institute for Linguistics of Hungarian Academy of Sciences, and
the Media Research Center of the Budapest University of Technology and
Economics. The most important by-products of the project are the anno-
tation guidelines based on the consensus of the project members. At the
stage of corpus design, one of the primary factors was the compatibility
with international standards, so the annotation schemes of CoNLL-2003
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and LDC LCTL were adapted to Hungarian. The categories to be anno-
tated are as follows: Person, Organization, Location, Role such as
elnök (‘President’) and szóvivő (‘spokesperson’), Rank such as Sir and Lord,
Brand/product, Title of artworks, and Miscellaneous. Addition-
ally, some metonymic names were also to be tagged: organization names
referring to a location (ORG:LOC), and location names referring to an or-
ganization (LOC:ORG). This solution can be postulated as a kind of com-
bination of Tag for Meaning and Tag for Tagging rules. The corpus itself
stayed unfinished for reasons outside the author’s control, but the anno-
tation guidelines have proven to be remarkably durable.

Some parts of the annotation guidelines were used by researchers of
the University of Szeged for building the Criminal NE corpus, which con-
tains texts related to the topic of criminally liable financial offences. Ar-
ticles were selected from the Heti Világgazdaság (HVG) subcorpus of the
Hungarian National Corpus [Váradi, 2002]. The range of annotated NE
categories was also based on the CoNLL-2003 annotation scheme, i.e. per-
son, organization, location and miscellaneous names are tagged. The cor-
pus has two annotated versions: one follows the Tag for Meaning rule,
while the other one is annotated according to the standard Tag for Tag-
ging approach.

The Szeged NER and Criminal NE corpora are freely available for re-
search purposes2, and the annotation guidelines of the HunNer corpus are
also available3.

4.2.4 The Size Factor

In support of the statement that gold standard NE tagged corpora are re-
stricted in size, we take a closer look at the exact numbers in this sub-
section. Since the organizers of MUC-7 did not follow the standard train–
devel–test set cut, counted optional fills allowed by the key (see MUC eval-
uation protocol, in Subsection 5.3.1), and use embedded annotations, we
could not compile a table with exact figures about NE types in the datasets.
CoNLL-2003 organizers, on the other hand, did provide such figures for
the English data [Tjong Kim Sang and De Meulder, 2003].

Table 4.2 shows the number of NEs in the CoNLL-2003 data files, both
by types (LOC, MISC, ORG, PER) and overall (NEs column). The num-
ber of tokens (tokens), and the proportion of NEs to the total number of
tokens (NE density) are also listed. As can be seen in the table, location

2http://www.inf.u-szeged.hu/rgai/nlp?lang=en&page=corpus ne
3http://krusovice.mokk.bme.hu/∼eszter/utmutato.pdf
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LOC MISC ORG PER NEs tokens density (%)

train 7,140 3,438 6,321 6,600 23,499 203,621 11.54
devel 1,837 922 1,341 1,842 5,942 51,362 11.57
test 1,668 702 1,661 1,617 5,648 46,435 12.16

total 10,645 5,062 9,323 10,059 35,089 301,418 11.64

Table 4.2: Number of NEs and tokens, and NE density per data file in
CoNLL-2003 English data.

names are the most frequent in almost all data files and also in total, so
good performance is expected in recognizing this category. NE density
is higher in the test set than in the development set. We therefore expect
that evaluating a system on the test set will lead to lower performance
measures than those obtained using the development set. Since the MISC
category is very diverse, and much smaller than other categories, it is rea-
sonable to expect the lowest performance on this class. For all types except
organizations, there are more instances in the development set than in the
test set, so in the case of organization names we expect lower performance
on the test set than on the development set. For actual results of our NER
system, see Chapter 5 and 6.

LOC MISC ORG PER NEs tokens density(%)

Szeged NER 1,501 2,041 20,433 1,921 25,896 225,963 11.46
Crimi T-f-M 5,049 1,917 8,782 8,101 23,849 562,822 4.24
Crimi T-f-T 5,391 854 9,480 8,121 23,846 562,822 4.24

Table 4.3: Number of NEs and tokens and NE density in Hungarian gold
standard corpora.

Table 4.3 shows the number of NEs and tokens as well as NE density
in Hungarian gold standard corpora. Here we do not give per data file
numbers, since these corpora are not divided into train–devel–test sets by
default. For comparable results, one should obtain the same cut as the one
used when comparing our tool to another Hungarian NER system (for
details, see Chapter 5). The first row of the table contains figures for the
Szeged NER corpus, the second and the third for the two versions of the
Criminal NE corpus (Tag for Meaning and Tag for Tagging).
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As can be seen in Table 4.3, the number of organization names in the
Szeged NER corpus is extraordinary high. NE density is similar to CoNLL,
but most NEs are organization names. This can be attributed to the fact
that texts are from business newswire articles, where names of firms, com-
panies and institutions play an important role. There is great difference
between the NE density of the Szeged NER corpus and the Criminal NE
corpus, which can be a result of the difference in domain. In short business
news, every sentence contains at least one, but often several NEs, while
longer news articles of other topics are less crowded with NEs. Signifi-
cant difference in NE density between the training and test set can cause a
dramatic decrease in cross-evaluation results.

Another interesting question these figures raise is the change in the
number of instances of NE types in the Criminal NE corpus when chang-
ing the annotation rule. The number of classes decreases when apply-
ing the Tag for Meaning rule, only the number of MISC increases. This
is mainly caused by the fact that every article contains a header with the
name of the newspaper, whose label changes from ORG to MISC, because
it does not refer to an organization, but a newspaper in this context. Other
metonymic shifts seem to be balanced between the classes.

4.3 Silver Standard Corpora

As illustrated above, gold standard datasets are highly domain-specific
(mostly newswire) and are restricted in size. Researchers attempting to
merge these datasets in the hope of acquiring a larger training corpus are
faced with the problem of having to combine various tagsets and anno-
tation schemes. Manual annotation of large amounts of text with linguis-
tic information is a time-consuming, highly skilled, and delicate job, but
large, accurately annotated corpora are essential for building robust su-
pervised machine learning NER systems. Reducing the cost of annotation
is therefore a key challenge.

There are several ways to reach this goal. One approach is to use semi-
supervised or unsupervised methods, which do not require large amounts
of labelled data (for details, see Section 5.3). Another approach is to gen-
erate resources automatically, or at least by applying NLP tools that are
accurate enough to allow automatic annotation. Yet another approach
is to use collaborative annotation and/or collaboratively constructed re-
sources, such as Wikipedia, Wiktionary, Linked Open Data, or DBpedia.
In the subsequent section we introduce a method which combines these
approaches by automatically generating freely available NE tagged cor-

55



pora from Wikipedia.
The section4 is structured as follows: in Subsection 4.3.1, we give an

overview of related work. Subsection 4.3.2 contains a description of our
method, and Subsection 4.3.3 shows how it is applied to Hungarian. The
corpus format is described in Subsection 4.3.5. In Subsection 4.3.4, we
present experiments and results on the newly generated datasets. Subsec-
tion 4.3.6 concludes the section with a summary.

4.3.1 Wikipedia and Named Entity Recognition

Wikipedia5, a free multilingual Internet encyclopedia, written collabora-
tively by volunteers, is a goldmine of information: at the time of writ-
ing the article6, Wikipedia contained about 21 million interlinked arti-
cles. Of these, 3,903,467 were in English, and 212,120 were in Hungarian7.
Wikipedia has been applied for several NLP tasks such as WSD, ontol-
ogy and thesaurus building, and question answering (see Medelyan et al.
[2009] for a survey). It is recognized as one of the largest available col-
lections of entities, and also as a resource that can improve the accuracy
of NER. The most obvious utilization of Wikipedia for NER is extracting
gazetteers containing person names, locations or organizations (e.g. Toral
and Muñoz [2006]). Creating dictionaries of entities is also a common step
of NE disambiguation [Bunescu and Pasca, 2006; Cucerzan, 2007]. Both su-
pervised and unsupervised NER systems use such lists (e.g. Nadeau et al.
[2006]). The knowledge embodied in Wikipedia may also be incorporated
in NER learning as features, e.g. Kazama and Torisawa [2007] showed that
automatic extraction of category labels from Wikipedia improves the ac-
curacy of a supervised NE tagger.

Another approach to improve NER with Wikipedia is the automatic
creation of training data. Richman and Schone [2008] built corpora for
less commonly taught languages annotated with NE tags. They used the
inherent category structure of Wikipedia to determine the NE type of a
proposed entity. Nothman et al. [2008] used a similar method to create
NE annotated text in English. They transformed Wikipedia links into NE
annotations by classifying target articles into standard entity classes. Their

4This section is mainly based on our article [Simon and Nemeskey, 2012].
5http://wikipedia.org
6To preserve the coherence of results, we list the same figures as those published in

our article. However, since our work is based on continuously changing resources, we
also provide current figures in footnotes.

7Wikipedia at the time of writing the dissertation contains over 22 million articles,
4,110,000+ in English and 232,000+ in Hungarian.
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approach to classification is based primarily on category head nouns and
the opening sentences of articles where definitions are often given.

Our approach to the recognition and classification of NEs in cor-
pora generated from Wikipedia involves mapping the DBpedia ontology
classes to standard NE tags and assigning them to Wikipedia entities. Ex-
cept for the Semantically Annotated Snapshot of the English Wikipedia
(SASWP) [Atserias et al., 2008], no such automatically built corpora are
freely available. SASWP provides a wide range of linguistic information:
POS tags, dependency labels, WordNet supersenses and NE annotation
according to BBN and CoNLL tagsets. Even though the SASWP NEs were
tagged by the best open source taggers available, the tags provided here,
based on the manual judgement of thousands of Wikipedia volunteers, are
more reliable.

Given the huge number of Wikipedia articles, we can build sufficiently
large corpora for less resourced languages as well, as our method is largely
language-independent. We demonstrate this on Hungarian. There are
manually annotated gold standard datasets for Hungarian, as described
above, but the one presented here is the first automatically NE annotated
corpus for Hungarian.

4.3.2 Creating the English Corpus

Our goal was to create a large NE annotated corpus, automatically gener-
ated from Wikipedia articles. We followed a similar path to Nothman et al.
[2008] and broke down the process into four steps:

1. Classifying Wikipedia articles into NE classes.

2. Parsing Wikipedia and splitting articles into sentences.

3. Labelling NEs in the text.

4. Selecting the sentences for inclusion in the corpus.

In this subsection, we describe how these steps were implemented, ex-
plain the general approach and its execution for English. Subsection 4.3.3
describes how the idea was adapted to Hungarian.

Articles as entities

Many authors such as Kazama and Torisawa [2007] and Nothman et al.
[2008] used semi-supervised methods based on Wikipedia categories and

57



text to classify articles into NE types. To avoid the inevitable classification
errors, we obtain entity type information from the DBpedia knowledge
base [Bizer et al., 2009], which presents type, properties, home pages, and
other information about pages in Wikipedia in a structured form. DBpedia
supplies us with high precision information about entity types at the ex-
pense of recall, since only a third of English Wikipedia pages are covered
by DBpedia at the time of writing8.

The types in DBpedia are organized into a class hierarchy, available as
an OWL9 ontology containing 319 frequent entity categories10, arranged
into a taxonomy under the base class owl:Thing. Most classes belong
to one of the 6 largest sub-hierarchies: Person, Organization, Event,
Place, Species and Work. The taxonomy is rather flat: the top level
contains 44 classes, and there are several nodes with a branching factor of
20.

Entity types are extracted automatically from Wikipedia categories.
However, the mapping between Wikipedia categories and classes in the
DBpedia ontology is manually defined. This, together with the fact that
the existence of the reference ontology prevents the proliferation of cate-
gories observable in Wikipedia, ensures that type information in DBpedia
can be considered gold quality.

From NER annotation standards available we chose to use the CoNLL-
2003 NE types. It is not difficult to see the parallels between the DBpedia
sub-hierarchies Person, Organization and Place and the correspond-
ing CoNLL NE types. The fourth category, MISC is more elusive; accord-
ing to the CoNLL annotation guidelines, the sub-hierarchies Event and
Work belong to this category, as well as various other classes outside the
main hierarchies.

While the correspondence described above holds for most classes in
the sub-hierarchies, there are some exceptions. For instance, the class
SportsLeague is part of the Organization sub-hierarchy, but accord-
ing to the CoNLL annotation scheme, it should be tagged as MISC. To
avoid misclassification, we created a file of DBpedia class–NE category
mapping. Whenever an entity is evaluated, we look up its class as well as
the ancestors of its class, and assign the category of the class that matches
the entity most closely. If no match is found, the entity is tagged with O,
i.e. it is not a NE. Since we take advantage of the inheritance hierarchy, the
mapping list remains short: it contains only the root classes of the main hi-

8Indeed, the number of DBpedia entries is growing with each new release. Currently,
2.35 million entities are classified in the ontology, thus more than half of the total number.

9http://www.w3.org/TR/owl-ref/
10Currently 359 classes.
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erarchies, exceptions like those mentioned above, and the various classes
that belong to the MISC category according to CoNLL annotation guide-
lines.

As of version 3.711, the DBpedia ontology allows multiple inheritence,
i.e. classes can have more than one superclasses, resulting in a directed
acyclic graph. Since selecting the right superclass and hence, the right
CoNLL tag, for classes with more than one parent cannot be reliably done
automatically, the class–category mapping had to be determined manu-
ally. The only such class in version 3.7, Library can be traced back to
both Place and Organization; its CoNLL tag is LOC. Using the map-
ping, we compiled a list that contains all entities in DBpedia tagged with
the appropriate CoNLL category (see Table 4.4).

DBpedia CoNLL DBpedia CoNLL

Person PER Library LOC
Place LOC MeanOfTransportation MISC
Organization ORG ProgrammingLanguage MISC
Award MISC Project MISC
EthnicGroup MISC SportsLeague MISC
Event MISC SportsTeamSeason O
Holiday MISC Weapon MISC
Ideology MISC Work MISC
Language MISC PeriodicalLiterature ORG

Table 4.4: Mapping between DBpedia entities and CoNLL categories.

We note here that our method can be trivially modified to work with
any tagset compatible with the DBpedia ontology. Indeed, the DBpe-
dia classes themselves define a NE tagset, which allows for a more fine-
grained NE type hierarchy.

Parsing Wikipedia

Wikipedia is a rich source of information: in addition to the article text, a
large amount of data is embedded in infoboxes, templates, and the cate-
gory and link structures. For the current task, we only extracted links be-
tween articles and article text. In addition to in-article links, our method

11Since then, version 3.8 was released.

59



takes advantage of the redirect and interlanguage links. The English cor-
pus is based on the Wikipedia snapshot as of January 15, 2011. The XML
files were parsed by the mwlib parser12; the raw text was tokenized by
a modified version of the Punkt sentence and word tokenizers [Kiss and
Strunk, 2006]. For lemmatization, we used the WordNet Lemmatizer in
NLTK13, and for POS tagging, the hunpos tagger [Halácsy et al., 2007].

Named Entity labelling

In order to automatically prepare sentences where NEs are accurately
tagged, two tasks need to be performed: identifying entities in the sen-
tence and assigning the correct tag to them. Sentences for which accurate
tagging could not be accomplished must be removed from the corpus. Our
approach is based on the work of Nothman et al. [2008]. Wikipedia cross-
references found in the article text are used to identify entities. We assume
that individual Wikipedia articles describe NEs, so a link to an article can
then be perceived as a mapping that identifies its anchor text with a par-
ticular NE.

The discovered entities are tagged with the CoNLL label assigned to
them in the entity list extracted from DBpedia. If the link target is not
in the entity list, or the link points to a disambiguation page, we cannot
determine the type of the entity, and tag it as UNK for subsequent removal
from the corpus. Links to redirect pages are resolved to point instead to the
redirect target, after which they are handled as regular cross-references.
Finally, sentences with UNK links in them are removed from the corpus.

Strictly speaking, our original assumption of equating Wikipedia arti-
cles with NEs is not valid: many pages describe common nouns (e.g. Book,
Aircraft), calendar-related concepts (e.g. March 15, 2007), or other concepts
that fall outside the scope of NER. To increase sentence coverage, we mod-
ified the algorithm to prevent it from misclassifying links to these pages as
unknown entities and discarding the sentence. The list of non-entity links
and the way of handling them is as follows:

Common noun links are filtered by POS tags: if they do not contain NNP,
they are ignored.

Time expression links require special attention, because dates and
months are often linked to the respective Wikipedia pages. We
circumvented this problem by compiling a list of calendar-related

12http://code.pediapress.com
13http://nltk.org/ modules/nltk/stem/wordnet.html#WordNetLemmatizer
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pages and adding them to the main entity list tagged with the
CoNLL category O.

Lower case links for entities referred to by common nouns, such as repub-
lic to Roman Republic are not considered NEs and are ignored.

In a Wikipedia article, typically only the first occurrence of a particular
entity is linked to the corresponding page. Subsequent mentions are un-
marked and often incomplete; for example, family names are used instead
of full names. To account for such mentions, we apply Nothman et al.’s
[Nothman et al., 2008] solution. For each page, we maintain a list of enti-
ties discovered in the page so far and try to associate capitalized words in
the article text with these entities. We augment the list with the aliases of
every entity, such as titles of redirect pages that target it, the first and last
names in the case of person names, and any numbers in the name. If the
current page is a NE, the title and its aliases are added to the list as well;
moreover, as Wikipedia usually includes the original name of foreign en-
tities in the article text, localized versions of the title are also added to the
list as aliases. Nothman et al. used a trie to store the entity list, while we
use a set. We also use a larger number of alias types.

Additionally, there are some special cases to our method, which are
detailed below.

Derived words. According to CoNLL guidelines, words derived from
NEs are tagged as MISC. We complied with this rule by tagging as
MISC each entity whose head is not a noun, as well as those where
the link’s anchor text is not contained in the entity’s name. The most
prominent example for such entities are nationalities, which can be
linked to their home country, a LOC; e.g. Turkish to Turkey. Our solu-
tion assigns the correct tag to these entities.

First word in a sentence. As first words are always capitalized, labelling
them is difficult if they are unlinked and not contained in the entity
alias set. In these cases, the decision is based on the POS tag of the
first word: if it is NNP, we tag it as UNK; otherwise as O.

Reference cleansing. Page titles and anchor texts may contain more than
just a name. For example, personal titles are part of the page titles in
Wikipedia, but they are not considered NEs according to the CoNLL
annotation scheme. To handle personal titles, we extracted a list from
the Wikipedia page List of titles, which contains titles in many lan-
guages. We removed manually all titles that also function as given
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names, such as Regina. If a link to a Person or UNK entity, or an un-
linked entity starts with, or consists solely of a title in the list, we tag
the words that make up the title as O.

Punctuation marks. Around names they may become part of the link by
mistake. We tag all punctuation marks after the name as O.

Discarding sentences

As mentioned above, sentences with words tagged as UNK are discarded.
Furthermore, there are many incomplete sentences in Wikipedia text: im-
age captions, enumeration items, contents of table cells, etc. On the one
hand, these sentence fragments may be of too low quality to be of any use
in the traditional NER task. On the other hand, they could prove to be
invaluable when training a NE tagger for user generated content, which is
known to be noisy and fragmented. As a compromise, we included these
fragments in the corpus, but labelled them as “low quality”, so that users
of the corpus can decide whether they want to use them or not. A sen-
tence is labelled as such if it either lacks a punctuation mark at the end, or
contains no finite verb.

4.3.3 Creating the Hungarian Corpus

The procedure described in the previous subsection was used to gen-
erate the Hungarian corpus as well. However, typological differences
posed several problems. In this subsection, we describe the changes in
the method prompted by differences between the two languages related
to the labelling of NEs.

Parsing the Hungarian Wikipedia

The Hungarian corpus is based on the Wikipedia snapshot as of March 9,
2012. Similarly to the English corpus, the XML files were parsed by the
mwlib parser. For tokenization and sentence segmentation, we used an
in-house statistical tool tailored for Hungarian, which has been trained on
the Szeged corpus [Csendes et al., 2004] and handles the peculiarities of
Hungarian orthography, such as the periods placed after numbers in date
expressions. Lemmatization and morphological analysis were performed
by hunmorph [Trón et al., 2005a], and hundisambig [Halácsy et al., 2005]
was used to select the correct analysis based on context. Hunmorph out-
puts KR codes [Rebrus et al., 2012], which, in addition to the POS category,
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also include inflectional information, making it much better suited to ag-
glutinative languages than Penn Treebank POS tags [Marcus et al., 1993].
One shortcoming of the KR code is that it does not differentiate between
common and proper nouns. Since in Hungarian only proper nouns are
capitalized, we can usually decide whether a noun is a proper noun based
on the initial letter. However, this rule cannot be used if the noun is at the
beginning of a sentence, so sentences that begin with unidentified nouns
have been removed from the corpus.

Named Entity labelling in Hungarian

For well-resourced languages, DBpedia has internationalized chapters,
but not for Hungarian. Instead, the Hungarian entity list comprises of
pages in the English list that have their equivalents in the Hungarian
Wikipedia. Two consequences follow.

First, in order to identify which pages denote entities in the Hungarian
Wikipedia, an additional step is required, in which Hungarian equivalents
of English pages are added to the entity list. English titles are retained
because (due to the medium size of the Hungarian Wikipedia) in-article
links sometimes point to English articles.

Second, entities without a page in the English Wikipedia are absent
from the entity list. This gives rise to two potential problems. One is that
compared to English, the list is relatively shorter: the entity per page ratio
is only 12.12%, as opposed to the 37.66% of the English Wikipedia. The
other issue is that, since missing entities are mostly Hungarian people,
places and organizations, a NE tagger that takes the surface form of words
into account might be misled as to the language model of entity names.
To overcome these problems, the list has to be extended with Hungarian
entity pages that do not have a corresponding English page. This is left for
future work.

To annotate the Hungarian corpus with NE tags, we chose to follow
the annotation scheme of the Szeged NER corpus, because it is similar to
the CoNLL standard, which was used for the English Wikipedia corpus.
There are some categories which are not considered NEs in Hungarian
(see Subsection 2.3.1). We therefore modified the mapping from DBpedia
categories to NE labels used when creating the English corpus. The entity
types in Table 4.4 whose labelling was changed from MISC to O are: ethnic
group, event, holiday, ideology, and language.

There is another special case in Hungarian: NEs can be subject to com-
pounding, and, unlike in English, the common noun following the NE
is joined with a hyphen, so they constitute one token. The joint com-
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mon noun can modify the original reference of the NE, depending on
the meaning of the common noun. For example, in the compound Nobel-
dı́j (‘Nobel Prize’), the common noun changes the labelling from PER to
MISC, while in the case of the compound WorldCom-botrány (‘WorldCom
scandal’), the NE tag changes from ORG to O. Additionally, inflections
of acronyms and foreign names ending with a non-pronounced vowel
have similar surface form to the aforementioned compounds, e.g. MTI-t
(‘MTI.ACC’), Shakespeare-rel (‘with Shakespeare’). It is important to distin-
guish these types of hyphenated NEs, because inflections do not change
NE labelling in this case, in contrast to some types of compounds. Zsibrita
et al. [2010] use a quite simple method based on morphological codes and
relative lemmas to distinguish hyphenated NE compounds from inflected
NEs. This solution may be built in our system in the future.

Error analysis

The automatic annotation of the Hungarian Wikipedia corpus was man-
ually checked on a sample corpus14. Of the whole corpus containing 19
million tokens, sentences of 18,830 tokens were randomly selected for in-
clusion in the sample corpus. This was annotated by hand, then the labels
given by us were compared to the labels emitted by the automatic method.
If the automatic tagging method is considered an annotator, the F-measure
can be considered a kind of inter-annotator agreement. Results are shown
in Table 4.5.

precision(%) recall(%) Fβ=1(%) NEs(#)

LOC 98.72 95.65 97.16 161
MISC 95.24 76.92 85.11 26
ORG 89.66 89.66 89.66 29
PER 88.30 89.25 88.77 93

total 94.33% 91.59% 92.94 309

Table 4.5: Results of manual evaluation on the sample corpus.

The confusion matrix for the four categories (Table 4.6) shows that mis-
classification is quite rare. For measuring the inter-annotator agreement in
another way, we also counted the Cohen’s κ from these scores, which is re-
sulted in a 0.967 value. Since the strength of agreement is said to be perfect

14This subsubsection is based on our article [Nemeskey and Simon, 2012].
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above 0.8 κ value according to Landis and Koch [1977], we can conclude
that the annotation of our automatically generated Hungarian Wikipedia
corpus reaches the gold standard quality. However, if we compare the
92.94% overall F-measure to the 99.6% agreement rate achieved by human
annotators of the Szeged NER corpus [Szarvas et al., 2006a], our result
seems to be quite low. We assume that more accurate tagging will require
investigating the error types and correcting the method.

Auto↓ / Gold→ PER ORG LOC MISC

PER 83 1 2
ORG 26 1 1
LOC 1 154
MISC 1 20

Table 4.6: The confusion matrix of the manually annotated sample corpus.

Misclassification can be explained by two main reasons. In the first
case, the category information of an entity in the DBpedia is incorrect. For
example, the ontology class of Magyar Tudományos Akadémia (‘Hungarian
Academy of Sciences’) in the DBpedia is WorldHeritageSite, which
causes that the label LOC is assigned to it, instead of the right choice, ORG.
Similarly, if only one reference of a referentially multivalent name is in-
cluded in the DBpedia ontology, the same label will be assigned to the
name in every context, irrespectively of its actual usage. Second, misclas-
sification can be caused by the fact that some in-article links in Wikipedia
may not point to the correct page. For example, the editor of a Hungarian
article made a link from a part of the company name ‘Walt Disney Co.’ to
the page of the person Walt Disney, therefore several versions of this name
(Disney, Walt Disney etc.) mentioned in the article are always labelled as a
person name.

Other error types of NER, such as identifying a non-NE as a NE (false
positive), not recognizing a NE (false negative), or not finding the correct
boundaries of a NE are more frequent. The figures of these error types are
shown in Table 4.7.

The most frequent reason for missing the correct boundaries of a NE
is that page titles and anchor texts may contain more than just a name.
These extra elements of a link usually are personal titles, which are han-
dled in the English corpus, but not yet in the Hungarian one. A manually
collected list of titles, such as király or pápa, can be used as a stopword list
in the future.

65



PER ORG LOC MISC

False positive 1 0 1 0
False negative 3 0 5 4
Incorrect boundaries 7 1 0 0

Table 4.7: Other error types in the sample corpus.

Moreover, the explanatory elements in Wikipedia page titles some-
times inhibit the recognition of a whole NE. This occurs in such cases
where the title of the linked article is not a proper name, but contains a
proper name already identified by the method, e.g. Ókori Róma (‘Ancient
Rome’), Magyar Wikipédia (‘Hungarian Wikipedia’). Since these page titles
are not contained by DBpedia ontology classes which are considered NEs,
they remain unlabelled.

All of the false negative names in the MISC class are entries in biblio-
graphical lists of authors’ works. Since these titles do not have their own
Wikipedia articles, i.e. they are not linked to a page, their recognition is not
possible by our method. Moreover, titles of artworks can contain any kind
of linguistic units, so even by applying all of our filtering techniques we
cannot discard sentences containing such NEs. Since the recognition and
processing of bibliographical references is a full-fledged NLP task, within
this workflow we cannot accomplish it.

A further type of error is caused by mistakes of the applied text pre-
processing tools. For example, if the sentence splitter did not recognize
period as a part of the abbreviation (e.g. Warner Bros.), but as a sentence
ending punctuation mark, it will not be annotated within the boundaries
of the name. If a period is inside a link and is interpreted as a sentence
end because of the sentence splitter’s overgeneralization tearing the link
apart, the NE will not be labelled properly. The initial word of a sentence
is considered a potential NE only if it is identified as a noun. Thus, some
sentence-initial NEs can remain unlabelled because of the tagging errors
of the morphosyntactic disambiguator. For example, in the sentence Hél
visszaengedte volna (‘Hel would have allowed him to return’), the word
‘Hél’ was identified as a verb by hundisambig, so it was not considered
a potential NE. These and similar problems may be solved by improving
the performance of the pre-processing tools or applying other ones.

Correcting the aforementioned error types and several other ones
caused by the deficiencies of our method is left for future work. Our pre-
liminary results, however, show that after error correction we will get gold
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standard quality corpora for training and testing NER systems.

4.3.4 Evaluation

Automatically generated corpora can be very useful for improving NER in
several ways: (a) for less resourced languages, they can serve as training
corpora in lieu of gold standard datasets; (b) they can serve as supplemen-
tary or independent training sets for domains differing from newswire; (c)
they can be sources of large entity lists, and (d) feature extraction.

To evaluate our corpora we used the hunner system [Varga and Si-
mon, 2007], which was originally developed for labelling NEs in Hungar-
ian texts, but can be tuned for different languages as well (for details see
Subsection 5.3.2). Corpus-specific features (e.g. chunks, Wikipedia links)
were removed to achieve better comparability, so the feature set consists
of gazetteer features, sentence start and end position, Boolean-valued or-
thographic properties of the word form, string-valued surface properties
of the word form, and morphological information.

We used the CoNLL standard method for evaluation, calculating pre-
cision and recall values, and F-measure. For more details on evaluation
metrics, see Subsection 5.3.1.

Wikipedia data

Our automatic annotation process retains all Wikipedia sentences which
remained after discarding the sentences containing unknown NEs and low
quality sentences, so sentences without NEs are also included in the cor-
pus. The rationale behind this is that we wanted to preserve the original
distribution of names in Wikipedia as much as possible. However, after
further investigation of the NE density in our corpora and the gold stan-
dard corpora, we decided not to include the sentences without NEs in
evaluation datasets, thus getting more comparable corpora.

enwiki enwiki filtered CoNLL

tokens 60,520,819 21,718,854 301,418
NEs 3,169,863 3,169,863 35,089
NE density (%) 5.23 14.59 11.64

Table 4.8: Corpus size and NE density of the English Wikipedia corpus
compared to the CoNLL-2003 gold standard dataset.
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huwiki huwiki filtered Szeged NER

tokens 19,108,027 3,512,249 225,963
NEs 456,281 456,281 25,896
NE density (%) 2.38 12.99 11.46

Table 4.9: Corpus size and NE density of the Hungarian Wikipedia corpus
compared to the Szeged NER corpus.

Tables 4.8 and 4.9 summarize the data regarding corpus size and
NE density. The English (enwiki column) and the Hungarian Wikipedia
(huwiki) corpora originally have NE densities of 5.23% and 2.38%, respec-
tively. In comparison to the gold standard datasets (CoNLL, Szeged NER)
these counts are quite low. This can be due to the difference between
domains: newswire articles usually contain more NEs. The other rea-
son might be that we discarded sentences containing unidentified NEs
(cf. Subsection 4.3.2). After filtering out sentences which do not contain
NEs, NE density of our newly generated corpora became quite similar to
that of gold standard datasets (enwiki filtered, huwiki filtered).

Experiments and results

The English Wikipedia corpus was evaluated against itself and the
CoNLL-2003 corpus. Since the filtered English Wikipedia corpus contain-
ing only the sentences with NEs is still very large, our experiments were
performed with a sample of 3.5 million tokens, the size of our filtered Hun-
garian corpus, divided into train and test sets (90%-10%).

As discussed in Subsection 4.2.2, training and testing across different
corpora decreases F-measure. The situation here is similar (see Table 4.10
for English results): when tested against the CoNLL test set, performance
of the NE tagger trained on Wikipedia (enwiki–CoNLL) is lower than that
achieved by training a model on the CoNLL training set (CoNLL–CoNLL),
and the same is true for the other direction (CoNLL–enwiki).

We also made experiments demonstrating that Wikipedia-derived cor-
pora can also be used for improving NER accuracy in other ways. First,
we collected gazetteer lists from the corpus for each NE category, which
improved the overall F-measure when used by the NE tagger for train-
ing and testing on the CoNLL datasets (CoNLL with wikilists). Second, the
CoNLL datasets were labelled by the model trained on the Wikipedia cor-
pus, then we used these labels as extra features when training the system
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train test precision recall F-measure

CoNLL CoNLL 85.13 85.13 85.13
enwiki enwiki 72.46 73.33 72.89
enwiki CoNLL 56.55 49.77 52.94
CoNLL enwiki 48.19 56.07 51.83
CoNLL with wikilists CoNLL 86.33 86.35 86.34
CoNLL with wikitags CoNLL 85.88 85.94 85.91

Table 4.10: Results for the English Wikipedia corpus.

on the CoNLL train set (CoNLL with wikitags). Both methods result in im-
proved F-measure on the CoNLL test set.

Since in Hungarian NE tagging we followed the Szeged NER corpus
annotation scheme, we performed experiments on this dataset. Hungarian
results are similar to the English ones (see Table 4.11), the only difference
is that F-measures for Hungarian are significantly higher. This can be due
to the fact that the MISC category for Hungarian contains less types of
names, thus the inconsistency of this class is smaller. In contrast to the
CoNLL corpus, the Szeged NER corpus was accurately annotated with an
inter-annotator agreement over 99%, which can also be a source of higher
F-measures.

train test precision recall F-measure

Szeged Szeged 94.50 94.35 94.43
huwiki huwiki 90.64 88.91 89.76
huwiki Szeged 63.08 70.46 66.57
Szeged huwiki 64.01 51.60 57.13
Szeged with wikilists Szeged 95.48 95.48 95.48
Szeged with wikitags Szeged 95.38 94.92 95.15

Table 4.11: Results for the Hungarian Wikipedia corpus.

Due to the quite good F-measure resulting from training on the Hun-
garian Wikipedia corpus and testing on the corresponding test set, we can
say that our Hungarian Wikipedia corpus can serve as a training corpus
to build NE taggers for non-newswire domains.
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4.3.5 Data Description

Our corpora are available under the Creative Commons Attribution-Share-
alike 3.0 Unported License (CC-BY-SA), the same license under which the
text of Wikipedia is released. Data files can be freely downloaded from
http://hlt.sztaki.hu/resources/hunnerwiki.html. The cor-
pora are also distributed through the META-SHARE network15, which is
an open, distributed facility for exchanging and sharing resources, and is
one of the lines of action of META-NET, a Network of Excellence funded
by the European Commission.

The files are in multitag format. Content lines are tab separated; there
is one column for the tokens plus one column per tagset. Sentence bound-
aries are marked by empty lines. The linguistic tags include the lem-
matized form of the word and its POS tag. Two NE tags are included
with each word: the most specific DBpedia category it belongs to and the
CoNLL NE tag. While NE tags can be considered silver standard, linguis-
tic tags are provided on a best-effort basis.

4.3.6 Summary

We have presented freely available NE tagged corpora for English and
Hungarian, fully automatically generated from Wikipedia. In contrast to
the methods used so far for automatic annotation of NEs in Wikipedia
texts, we applied a new approach, mapping DBpedia ontology classes to
standard CoNLL NE tags and assigning them to Wikipedia entities. Fol-
lowing Nothman et al. [2008], the process can be divided into four main
steps: classifying Wikipedia articles into NE classes, parsing Wikipedia
and splitting articles into sentences, labelling NEs in the text, and select-
ing sentences for inclusion in the corpus.

The large amount of Wikipedia articles opens the possibility of build-
ing large enough corpora for otherwise less resourced languages such as
Hungarian. Due to the properties of Hungarian, some steps are slightly
different, and special linguistic phenomena pose several problems related
to the NER task at hand.

Automatically generated corpora can be useful for improving NER in
several ways. We showed that using gazetteer lists extracted from our
corpora and extra features supplied by the model trained on our corpora
both improve F-measure. Moreover, our Hungarian corpus can serve as a
training corpus for more general domains than the classic newswire.

15http://www.meta-share.eu
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4.4 Conclusion

Several current trends concerning the NER task emerge from our
overview. The main efforts are directed to reducing the annotation labour,
robust performance across domains, and scaling up to fine-grained entity
types.

Machine learning algorithms typically learn their parameters from a
corpus, and systems are evaluated by comparing their output to another
part of the corpus or to another corpus. Thus, for the purpose of devel-
oping NER systems, corpora containing rich linguistic information are re-
quired. Datasets manually enriched with annotation are called gold stan-
dard corpora. They have to meet several requirements, so building such
corpora is a time-consuming, delicate job, which requires large amounts
of resources. Thus, reducing the annotation cost is one of the main trends
in NLP in general, and NER in particular.

Second, large and accurately annotated corpora are essential for build-
ing robust supervised machine learning NER systems. The gold standard
datasets currently available are highly domain-specific and restricted in
size. Experiments confirmed that cross-domain evaluation of NER sys-
tems results in low F-measure. Thus, current efforts are directed to reach
robust performance across domains.

The third trend in NER research is scaling up to fine-grained entity
types. Classic gold standard datasets use coarse-grained NE hierarchies,
taking into account only the three main classes of names (PER, ORG,
LOC) and certain other types depending on the applied annotation scheme
(e.g. MISC in CoNLL, and time and numerical expressions in MUC). Fine-
grained NE hierarchies also exist [Sekine et al., 2002; Weischedel and Brun-
stein, 2005; ACE, 2008], but when used for evaluation, they have to be
mapped to the classic coarse-grained typology, which is far from trivial.

In this chapter, we presented a new method to achieve at least a few
of these goals. Building automatically generated corpora from collabora-
tively constructed resources such as Wikipedia and DBpedia significantly
decreases annotation labour. While continuous manual annotation is not
feasible for building large corpora, our method can be used for generat-
ing even larger datasets, thus automatically generated corpora are not re-
stricted in size. Using continuously growing collaboratively constructed
resources also creates the possibility of building corpora with a more fine-
grained NE hierarchy than one consisting of the classic NE types. How-
ever, reaching robust performance across domains still remains a problem
and needs further investigation.
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Chapter 5

Approaches to Named Entity
Recognition

The two main approaches to NER as well as to other NLP tasks are us-
ing rationalist or empiricist methods. Section 5.1 gives a brief introduction
to these approaches, and shows where they stand in philosophy, in lin-
guistics and in NLP. Sections 5.2 and 5.3 focus on NER: they introduce the
rationalist and the empiricist methods, respectively, which are generally
used for the task, and include descriptions of a rule-based and a statistical
NER system for Hungarian, to the development of which we contributed.
Finally, in Section 5.4, we conclude with a summary of advantages and
disadvantages of the two approaches.

5.1 Rationalist and Empiricist Approaches

One of the biggest challenges in NLP is providing computers with sophis-
ticated knowledge for being able to process language. There are several
approaches to reach this goal, and they can be divided into two main
groups. One of them is the rationalist approach, which uses rules writ-
ten by a linguist, thus providing the computer with linguistic information
explicitly. The second one is the empiricist methodology, where the com-
putational linguist gives text resources to the computer, which in turn uses
them to teach itself.

This dichotomy is also valid for linguistics and the cognitive sciences,
and has its roots in philosophy. It is historically related back to early debates
about rationalism versus empiricism in the 17th century. Descartes and
Leibniz took the rationalist position, asserting that all truth has its origins
in human thought and in the existence of innate ideas implanted in our
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minds from birth. The source of innate ideas is God, so the source of all
knowledge is divine revelation. In contrast, other philosophers such as
Locke argued that sensory experience has priority over revelation. They
took the empiricist view, and said that our primary source of knowledge
is the experience of our faculties.

In the context of linguistics, this debate leads to the following question:
to what extent does human linguistic experience, versus our innate lan-
guage faculty, provide the basis for our knowledge of language? Chom-
sky’s work in general and, more specifically, his views on language ac-
quisition are very much in the rationalist camp. Chomsky argues that it is
difficult to see how children can learn something as complex as the natural
language from the limited input they hear, so the language faculty must
be innate. This is often called the problem of the poverty of stimulus. On
the other side the behaviorists agree with Locke that the mind at birth is
a tabula rasa, and language is entirely learned, are clearly empiricists. In
fact, the question of language acquisition cannot be simplified to such a
dichotomy, but is driven by many factors [Harley, 2001].

Abney [1996] shows that arguments for statistical methods in linguis-
tics also come from the area of language acquisition. Experimental evi-
dence shows that children do not acquire their first language without er-
rors, and that these errors are not necessarily arbitrary but may clearly
follow rules or patterns. This suggests that at each stage of development
the child entertains different, sometimes erroneous hypothesis grammars
[Serény et al., 2009]. Changes in child grammar are actually reflected in
changes in relative frequencies of structures: children experiment with
rules for certain periods of time. During the trial period, both the new
and old versions of a rule co-exist, and the probability of using one or the
other changes with time, until the probability of using the old rule finally
drops to zero. Thus, the child’s grammar is a probabilistic grammar.

In NLP, this issue surfaces in debates about the priority of corpus data
versus linguistic introspection in the construction of computational mod-
els. The rationalist approach is often described as rule-based, since lin-
guists following this approach create rules based on introspection. In-
trospection is a little informal psycholinguistic experiment performed by
linguists on themselves with such questions as “Can you say this?” or
“Does this mean this?”. The answers for these questions can be postulated
as exact linguistic data only if one accepts the assumption that humans
innately have knowledge of language. On the opposing side, statistical
or data-driven approaches obtain linguistic knowledge from vast collec-
tions of concrete example texts, i.e. corpora (cf. Chapter 4). The machine
learning algorithm then learns patterns of language units and linguistic
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phenomena, depending on the application.

5.1.1 The Two Camps in the 20th Century

In this subsection, we give a brief overview of the history of NLP. We only
mention the main steps and findings of the followers of the two camps.
For a more detailed description, we direct the reader to the essential in-
troductory work of Jurafsky and Martin [2000] and to Brill and Mooney’s
article about NLP [Brill and Mooney, 1997].

The history of NLP dates back to the period of World War II, when sev-
eral military purpose developments gave great impetus to NLP research.
One of the main goals was decoding encrypted messages sent by enemies,
a task which can be postulated as the roots of MT. Later, Shannon’s noisy
channel model [Shannon, 1948] was applied to human language: several
NLP tasks can be resolved if they are treated as a decoding problem in a
noisy channel. MT can also be considered a noisy channel problem: we
consider a string of the source language as an observation of the target
language version that has been sent through a noisy channel. The task of
the decoder is then to find the original string of the target language. Since
then, this approach had proven highly successful mostly in speech recog-
nition, but also in other NLP tasks such as spellchecking [Brill and Moore,
2000] and text normalization [Oravecz et al., 2010].

Shannon’s other invention was borrowing the concept of entropy from
thermodynamics and applying it to the measurement of information ca-
pacity of a channel. This was one of the fundamental steps of information
theory. The concept of entropy was later applied for the information con-
tent of a language, and in 1951, Shannon performed the first calculations
of entropy for English using probabilistic techniques [Shannon, 1951].

In the 1950s, behaviorism was thriving in psychology, while within lin-
guistics, the main insight was to use distributional information, i.e. the en-
vironment a word can appear in, as the tool for language study (e.g. Har-
ris [1951]). In 1957, Chomsky published his famous work Syntactic struc-
tures [Chomsky, 1957], and in 1959, his review on Skinner’s Verbal Behavior
[Chomsky, 1959]. These works redefined the goals of linguistics dramat-
ically: linguistics should not be merely descriptive, but should be con-
cerned with the question of how children acquire the language, and what
the common, universal properties of human language are. According to
Chomsky’s point of view, these phenomena cannot be studied through
data, using “shallow” corpus-based methods.

Chomsky’s arguments were very influential: much of the work on
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corpus-based language learning was halted. Researchers in artificial in-
telligence and NLP adopted this rationalist approach and used rule-based
representations of grammars and knowledge until the 1980s.

Rule-based systems have many disadvantages, however. The number of
possible parses of a sentence within the generative paradigm can be huge,
snowballing as sentences grow longer [Abney, 1996]. Parsing sentences
with such a large number of potential parses was not feasible computa-
tionally in the 1980s, and it is not effective even in the 21st century.

A remarkable property of human language comprehension is its error
tolerance, which is not mirrored in rationalist methods. For example, the
sentence ‘Thanks for all you help’ has one grammatical analysis: thanks
for all those who you help, which would be assigned to this sentence by a
rule-based system. However, it is preferably interpreted as an erroneous
version of thanks for all your help. Since the latter analysis is more frequent,
a statistical method using frequency information would perform better on
analysing this sentence. Human language texts are crowded with similar
errors, so processing them requires more robust solutions than rule-based
systems can provide.

Developing rule-based systems remained difficult, requiring a great
deal of domain-specific knowledge engineering. In addition, the systems
were brittle and not interchangable across different domains and tasks.
Partially in reaction to these problems, in the late 1980s and in the 1990s,
focus has shifted from rationalist to empirical methods.

In the meantime, the first computer-readable corpus, the Brown Cor-
pus [Kucera and Francis, 1967] was created in the US, which then inspired
a whole family of corpora, including the Lancester-Oslo-Bergen Corpus
[Leech et al., 1983], Brown’s British English counterpart, and the London-
Lund Corpus [Svartvik, 1990]. These constitute the first generation of cor-
pora, which have been especially influential in the development of English
corpus linguistics.

In the 1980s, the stochastic paradigm played a huge role in the de-
velopment of speech recognition algorithms. Speech researchers were
quite successful using models based on the noisy channel metaphor and
Hidden Markov Models (HMMs) that vastly overperformed the previous
knowledge-based approaches. The success of statistical methods in speech
then spread to other areas of NLP, first to POS tagging [Bahl and Mercer,
1976], which can be now performed at an accuracy close to human perfor-
mance (it is usually said to be more than 95%).

The 1990s are often called the period of the return of empiricism. Proba-
bilistic and data-driven models had become standard throughout the en-
tire field of NLP, mainly due to their robustness and extensibility. Unlike
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rule-based methods, statistical methods can produce a probability esti-
mate for each analysis, thereby ranking all possible alternatives. This is
a more flexible approach, which can improve robustness by allowing the
selection of a preferred analysis even when the underlying model is inad-
equate (cf. the example sentence above ‘Thanks for all you help’).

Statistical approaches also have disadvantages. For training and test-
ing, they require large amounts of accurately annotated data, as illustrated
in Chapter 4. Thus, manual labour has not been removed from NLP, but
shifted to other areas. In addition, there are certain tasks which are far
from being resolved, even by statistical approaches. This is the situation,
for example, with MT, where researchers have high hopes for statistical
methods, but the output of such systems is still far from ideal.

Indeed, rule-based systems also have their advantages. One of them is
that experts have greater control over the actual language processing. This
makes it possible to systematically correct mistakes in the software and
give detailed feedback to the user, especially when rule-based systems are
used for language learning.

As the strengths and weaknesses of statistical and rule-based systems
tend to be complementary, current research attempts to deal with hybrid
solutions that combine the two methodologies.

5.2 Rule-based Systems

NER systems have the ability to recognize and classify previously un-
known entities, based on rules triggered by distinctive features associated
with positive and negative examples. While early studies mostly made use
of hand-crafted rules, more recent ones use supervised machine learning.
This is demonstrated by the fact that only three systems out of eight were
statistical in MUC-7 [Chinchor, 1998b], while 16 machine learning systems
were presented at CoNLL-2003 [Tjong Kim Sang and De Meulder, 2003],
a forum devoted to learning techniques.

NER requires specialized linguistic knowledge about the structure or
composition of each type of name. For example, person names usually
consist of first names and last names, with optional name prefixes and
suffixes, and many organization names contain acronyms such as Corp. or
Ltd. Following McDonald’s terminology [McDonald, 1996], we call these
internal evidence, derived from within the sequence of words that comprise
the name. However, there are many names that do not provide the struc-
tural indication of their category membership. For example, most country
names, such as France, have no internal structure indicating that the name
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is a country.
Thus, for recognizing and classifying names, knowledge about how

names appear in free text is also required. This knowledge consists of
contextual clues about how each type of name may appear. For example,
person names may have professional titles or descriptions preceding or
following the name. These are examples of external evidence. Language
units cannot be categorized based on internal evidence alone and require
external evidence from the context as well.

For this reason, a rule-based NER application requires patterns which
describe the internal structure of names and context-sensitive rules which
give clues for classificiation. Looking up name lists, identification of
aliases, and handling the ambiguity of names are all necessary for iden-
tifying internal and external evidence.

The structure of this section is as follows. In Subsection 5.2.1, we give
a description of a rule-based NER system we constructed for identifying
NEs in the text of Magyar Nagylexikon (MNL), a Hungarian encyclopedia.
Subsections 5.2.2 and 5.2.3 enumerate regular expression patterns which
can serve as either internal and external evidence for NER. Subsection 5.2.4
concludes the section with a summary of rule-based systems, pointing out
their disadvantages.

5.2.1 A Rule-based System for Recognizing Named Enti-
ties in Hungarian Encyclopedic Texts

The linguistic workflow of the MNL project aimed at extracting the impor-
tant pieces of information from the text and structure of the entire encyclo-
pedia, and assign them to ontology classes, thus providing a knowledge
representation which could serve as the basis of several web applications.
Since important pieces of information are mostly NEs, the main subtask
of the project was NER. We extracted person, location, and organization
names, titles of artworks, and temporal expressions1.

For implementing the steps of the linguistic workflow, we used GATE2,
General Architecture for Text Engineering [Cunningham et al., 2011],
which is an open source software capable of solving text processing prob-
lems. GATE provides built-in tools, such as tokenizers, sentence splitters,

1The project ran in 2003–2004, within the boundaries of the Magyar Nagylexikon
Kiadó Zrt., the company responsible for editing and publishing the Hungarian ency-
clopedia, Magyar Nagylexikon. Two consequences follow: first, language processing
resources were used as they were available then. Second, results remained unpublished
because they were treated confidentially.

2We used version 2.1, the most current version in 2003.
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and other higher level processing resources, primarily for English. To
adapt it to Hungarian, we had to create several language and processing
resources for Hungarian. GATE has another built-in functionality, which
is language-independent and very useful for rule-based NER: JAPE is a
Java Annotation Patterns Engine, which provides finite state transduction
over annotations based on regular expressions.

To achieve our goal of annotating NEs in text, several pre-processing
steps had to be taken. The complete workflow of NER is as follows:

Tokenization. Tokenization of the entire text of the encyclopedia was per-
formed by GATE’s tokenizer module.

Word lemmatization. Language units annotated as words, thus non-NEs,
were lemmatized, and full morphological annotation was assigned
to them. This was performed by Jspell, a Java reimplementation
of hunspell [Németh et al., 2004].

NE lemmatization. Since list lookup works on literally equal matches,
forms of NEs occurring in the text had to be stripped of their suffixes.
However, hunspell works with a limited lexicon and contains only
frequent names and their lemmatization rules. In addition, lemma-
tization rules for NEs are different from those for common nouns
(cf. Subsection 2.3.2). We therefore adopted a new strategy. The
lexicon file of hunspell was replaced with name lists generated
from the inherent XML tagset of the encyclopedia3. Affixing rules
which can operate on NEs were selected from the original affix file
of hunspell, separately for each name type. In Hungarian, suffixa-
tion of foreign words and names works according to the constraints
of vowel harmony, so allomorphs are chosen based on the phonolog-
ical form of the name in question. For this reason, a new component
was added to the NE lemmatizer, which contains phonological and
transcription rules for 20 languages.

Gazetteer list compilation. Even though ‘gazetteer’ originally means ge-
ographical directory, in the context of NER the phrase is simply used
to indicate a list of names. Gazetteers for each type of NE were gen-
erated from the inherent XML tagset of the encyclopedia. Since the
text had been tagged manually by human editors, and the original
goal of tagging was only to prepare articles for printing, the tags had

3The encyclopedia was written and edited in an XML-based editorial system, which
contained tags indicating several types of content, e.g. regnal name, place of birth and
death, structured according to the rules of a pre-defined DTD.
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many errors. For this reason, we checked and cleaned the lists man-
ually. In addition, NEs had to be lemmatized to get exact matches.
This was performed by the NE lemmatizer, and suffixed NE forms
were changed to their lemmatized form. The gazetteer lists also con-
tained abbreviated forms of NEs.

Transducing. First, GATE’s gazetteer module annotates elements of NEs:
if a language unit occurring in the text matches exactly one unit in
any of the gazetteer lists, it gets annotated with the appropriate tag,
e.g. person first name, person full name, month, or day. Second, after
investigating the text of encyclopedia, we manually created regular
expression patterns operating on these annotations. Finally, we used
JAPE to build finite state transducers from the patterns and annotate
NEs in the text.

Sentence splitting. Before splitting the text into sentences, abbreviations
covered by gazetteer items were omitted, so as not to be considered
sentence ending elements.

This order of steps differs slightly from that currently applied by statis-
tical NER systems, for which sentence splitting is usually the second pre-
processing step after tokenization, since they operate on sentences and
need sentence boundaries to recognize NEs. In contrast, our rule-based
system operates on patterns of text, so sentence boundaries are not as im-
portant as in the case of supervised systems. Another difference is that
we lemmatize NEs and non-NEs separately. For this purpose, the system
has to distinguish NEs from non-NEs by the time of lemmatization, which
requires a kind of combination of POS tagging and NER. As far as we
know, there has only been one attempt to resolve POS tagging and NER in
a parallel way. Móra and Vincze [2012] emphasize that by exploiting the
differences in affixation of proper names and common nouns in Hungar-
ian, joining the two steps may accelerate the identification of NEs.

The performance of our rule-based system was not measured in any of
the standard ways, for several reasons. The first Hungarian NE tagged
gold standard corpus, the Szeged NER corpus [Szarvas et al., 2006a],
which could have been used to evaluate our system, was not created un-
til a few years later, and at any rate, no full conclusions could have been
drawn from it, since encyclopedic text is very different from newswire.
For financial reasons, the project was cut before achieving success with
the linguistic workflow and obtaining full results, but manual checking
of the output showed that our system was able to identify and classify a
good proportion of NEs in the text of the Hungarian encyclopedia.
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5.2.2 Internal Evidence

In this subsection, we enumerate name patterns which provide informa-
tion about the internal structure of NE types. The types of interest are:
person, organization, and location names, and temporal expressions. In-
deed, several more types can be handled by similar rules, but our goal
here is to demonstrate the kinds of rules that are generally used, not to
provide an exhaustive list. We give examples only for Hungarian NEs and
patterns matching them.

For representing rules in this and the following subsection, we use
standard regular expression notation (for detailed description, see e.g. Ju-
rafsky and Martin [2000]). Expressions referring to gazetteer lists are ital-
icized as well as the capitalized word term, which refers to the regular ex-
pression [A-Z][ˆ ]+. We did not create patterns for abbrevations, since it is
presupposed that gazetteer lists include them.

When constructing the patterns, we assumed that they are used after
the lookup in gazetteer lists has taken place and that they can thus operate
on annotation provided by the gazetteers. Rules follow each other in order
of precedence, so lower level patterns can be parts of higher level ones. For
example, PERSON NAME in Example 5.4 can be built based on the pattern
in Example 5.1. Higher level patterns are marked by small capitals.

Person names

In the Western naming systems, a person name typically consists of a fam-
ily name and a given name. Indeed, one can have more family names,
e.g. Csokonai Vitéz Mihály, as well as more given names, e.g. Esterházy Pál
Antal. In Hungarian, the family name comes first, with the given name
behind, a fact which can be formulated by the rule:

(5.1) family name+ given name+→ PERSON NAME

However, family names, particularly those of famous people, can also
stand by themselves, e.g. Csontváry. Following the first mention of the full
name in a document, the given name and the family name can both stand
alone, e.g. Ganz and Ábrahám after mentioning Ganz Ábrahám. Thus, we
need more patterns which allow names to stand alone:

(5.2) given name→ PERSON NAME

(5.3) family name→ PERSON NAME
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Name affixes, for example generational titles, can be used with a per-
son name and are considered part of a name. In Hungarian, generational
titles precede the person name, e.g. ifj. Bethlen István. For handling these
cases, we need to define one further pattern:

(5.4) generational prefix PERSON NAME→ PERSON NAME

In ordinary newswire text, names of emperors and popes are not men-
tioned often, but they are frequent in an encyclopedia. Such names consist
of a regnal (or papal) name and a Roman numeral. In Hungarian, the
number comes first, followed by a dot, e.g. XIII. Leó.

(5.5) [IVX]+\. regnal name→ PERSON NAME

Since naming traditions, spelling rules and other properties of names
vary across languages, patterns must be constructed individually for each
language that the system is expected to work on. For example, in English,
the order of name elements is the inverse of that in Hungarian, since given
name precedes family name, generational titles are suffixes, not prefixes,
and the numbers in the names of emperors are behind the regnal name,
e.g. John Smith, H. C. Mansfield Jr., and Leo XIII. German, Dutch and Italian
names frequently include a family name affix, which can be written in two
(or more) words, e.g. Hahn von Rottenstern, Henry van der Velde, but can also
be directly attached to the name, e.g. Niccolo d’Antonio d’Apulia. Handling
such cases also requires construction of more patterns.

Furthermore, there are naming systems differing from the Western tra-
dition where we cannot divide person names into any of the parts de-
scribed above, e.g. Abdalláh ibn Abdal-Muttalib and Visvanath Pratap Szingh.
And indeed, several person name types exist throughout the world which
cannot be recognized by means of similar patterns.

Organization names

Names of companies can be complex phrases, consisting of several words.
Identifying organization names such as Thinking Machines or Next is quite
difficult, sometimes even impossible without considering external evi-
dence. However, there are organization names which share a common
feature, such as typical suffixes like Kft. or Zrt., the Hungarian equiva-
lents of LLC and Ltd. To handle such cases, we must create lists of typical
organization name suffixes and define an appropriate pattern:

(5.6) capitalized word+ organization suffix
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Location names

Location names can also contain typical affixes which can help identify
several location types. For example, names of public places have such
suffixes as utca (‘street’) and tér (‘square’).

(5.7) capitalized word+ street suffix

If a capitalized word is preceded by an orientation prefix, it is likely
to be a geographical name, e.g. Észak-Magyarország (‘North Hungary’). In
Hungarian, orientation prefixes are always attached to the names by a hy-
phen.

(5.8) orientation prefix-capitalized word+

Similarly, if a capitalized word is followed by a common noun which
can be found in a list of geographical objects, and is attached by a hyphen,
it is surely a place name, e.g. Margit-hı́d (‘Margaret Bridge’).

(5.9) capitalized word+-geographical object

Temporal expressions

Regular expressions are very useful for identifying dates (e.g. 1979) and
time expressions (e.g. 7:48). Here, gazetteer lookup is not as important
as in the previous cases, but short lists with the names of months, days,
and seasons can be applied (e.g. december 1. (‘1st December’)). Use of time
expressions highly depends on text genre. For example, dates in newswire
texts usually refer to a limited time interval (e.g. 2000-es évek (‘2000s’)), and
do not vary as greatly as in encyclopedic texts (e.g. Kr. e. 3. század (‘3rd
century BC’)). However, recognizing time expressions in any kind of text
by means of regular expressions usually results in better performance than
in the case of names. A few example patterns follow:

(5.10) [1-2][0-9][0-9][0-9]

(5.11) [12]?[0-9]:[0-5][0-9] ([PA]M)?

(5.12) month [123]?[0-9]\.

(5.13) Kr\. (e|sz)\. [1-9][0-9]*\. (év)?század

(5.14) ([1-2][0-9])?[0-9][0-9]-[eaöo]s év(ek)?
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5.2.3 External Evidence

Internal evidence is usually insufficient for recognizing and classifying
names. Knowledge about how certain types of names appear in context is
also required. In this subsection, we give examples of patterns that serve
as external evidence for NE types. In the case of external evidence, we do
not know the type or the internal structure of the capitalized word, since
we want to classify it by means of contextual clues. For this reason, the
term capitalized word is used in patterns instead of higher level construc-
tions, such as PERSON NAME.

Person names

Several name affixes can be used with person names, which provide in-
formation about the person, indicate that the individual holds a position,
educational degree, accreditation, office, or honor. These are usually not
considered parts of a name, thus they are examples of external evidence.
In Hungarian, these affixes stand before the name, e.g. gr. Esterházy Károly
(‘Count Károly Esterházy’), Madame Sabatier. So if a capitalized word is
preceded by such a personal prefix, it is likely to be a person name:

(5.15) personal prefix capitalized word

In news, it is typical to give a person’s age right after the name in paren-
theses, e.g. K. József (42) bevallotta bűnösségét (‘József K., 42, declared him-
self to be guilty’). In these cases, the family name is usually abbreviated,
so the following rule can be formulated:

(5.16) [A-Z]\. capitalized word \([1-9][0-9]?\)

Apposition of person names is also a typical pattern in news. The
definitive element is usually a noun phrase, containing a definite article,
an organization name and a common noun signing the role, e.g. Kis, a Gitt-
egylet elnöke (‘Kis, the chairman of Gittegylet’). This pattern, indeed, can
also be applied to the recognition of organization names.

(5.17) capitalized word, az? capitalized word role

The list of patterns could be continued almost endlessly. For several
text genres, a large number of similar patterns can be defined, but this
requires proper investigation of corpora.
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Organization names

It is quite frequent to find after the full organization name its abbrevia-
tion in parentheses, e.g. adta hı́rül a Magyar Távirati Iroda (MTI) (‘Magyar
Távirati Iroda (MTI) reported’). Thus, finding acronyms in parentheses af-
ter capitalized word(s) indicates that both of them are organization names.
The likelihood grows further if one of them is found to be an organization
name in a previous gazetteer lookup.

(5.18) az? capitalized word+ \([A-Z]+\)

Location names

After examining several types of text, we found that location names match
patterns that are highly genre-dependent. For example, in encyclopedic
text, definition sentences usually contain the place of birth and death, and
these definition sentences follow a similar pattern in each article, e.g. Gae-
tano Donizetti (Bergamo, 1797. november 29. – Bergamo, 1848. április 8.) (‘Gae-
tano Donizetti (Bergamo, 29 November 1797 – Bergamo, 8 April 1848)’). In
the following pattern we presuppose that dates have been recognized pre-
viously. This pattern can also be used for recognizing person names.

(5.19) capitalized word+ \(capitalized word+, date – capitalized word+, date\)

Temporal expressions

To consider elements in the context of a temporal expression as external
evidence, we have to distinguish between absolute and relative tempo-
ral expressions. If our goal is to recognize an absolute temporal expres-
sion, language units standing close to it in the text and making it relative,
e.g. 1991 végén (‘the end of 1991’) can be considered external evidence.
Postpositions typically occurring with temporal expressions can also aid
recognition, e.g. dec. 2. előtt (‘before 2 Dec’).

(5.20) [1-2][0-9]+ (vége|eleje|közepe)

(5.21) hónap [1-3]?[0-9]\. (előtt|után)

The list of expressions and postpositions occurring typically in the con-
text of temporal expressions is short, so they can be simply enumerated
with OR operators. As can be seen from the example patterns, however,
contextual clues are not necessary for recognizing temporal expressions,
since their internal structure is transparent enough.
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5.2.4 Summary

We presented a rule-based system which allows us to recognize and clas-
sify NEs in Hungarian encyclopedic text. The system was developed only
for the MNL, and highly depends on its strict format and the lists extracted
from its inherent tagset. It is not portable to any other text, thus our system
cannot be used for other purposes. This is one of the main shortcomings
of rule-based systems.

After investigating rule-based systems and studying internal and ex-
ternal evidence for particular NE types, we can assert that rule-based NER
systems have advantages as well as shortcomings. Certain types, such as
temporal expressions have such transparent internal structure that they
can be easily recognized by means of regular expressions. This is con-
firmed by the fact that supervised systems also use Boolean-valued fea-
tures based on regular expressions, i.e. if a language unit matches such a
pattern, then it gets assigned a feature such as isDate=True.

Combining internal and external evidence results in higher perfor-
mance. At the time of writing, we have knowledge of only one rule-based
NER system for Hungarian, which also makes use of both internal and ex-
ternal evidence. This system has been reported to achieve 82.13% overall
F-measure in recognizing person, location and organization names on a
20,000 tokens sub-corpus of Szeged NER corpus [Gábor et al., 2003]. Table
5.1 shows results for each NE type. High precision and low recall values
reveal the advantages and disadvantages of rule-based systems. If we de-
fine strict rules, we will recognize a low number of NEs, but will achieve
high precision. If our patterns are more permissive, we will find more
NEs, at the expense of precision loss. It is impossible to cover all patterns
in which NEs can be found without covering such patterns which do not
contain NEs, or contain a different type of NE.

gold # TP # FP # FN # P (%) R (%) F (%)

ORG 1461 1078 373 383 74.3 73.8 74.0
LOC 121 86 4 35 95.6 71.1 81.5
PER 98 85 4 13 95.5 86.7 90.9

Table 5.1: Results of a rule-based NER system for Hungarian (TP=true
positive, FP=false positive, FN=false negative, P=precision, R=recall, F=F-
measure).

As can be seen from the example patterns above, rules often operate on
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annotation supplied by gazetteer lookup. In order to find more NEs and
increase recall figures, the best way is to increase the size of gazetteers.
Thus, rule-based systems highly depend on the size of gazetteers. (See
Subsection 6.5.1 for more details.) NER also requires the identification of
aliases, or shortened variations of full proper names. Thus, gazetteer lists
have to contain abbreviations and acronyms, or new patterns have to be
defined to handle them.

Another way to increase recall is writing rules for further patterns and
thus cover a greater number of NEs. However, the number of rules is
quite large even in a strict system. If there are lower and higher level rules
which can be embedded into each other and must be ordered, then it will
be quite difficult to incorporate new rules into the system. It is hard to
keep track of all rules and a single human error may cause the system to
malfunction.

Rule-based systems are highly language-dependent, since patterns re-
quire exact text matches and can vary from language to language. Rules
must be revised for each new language, just as new rules are necessary
for performing NER on new domains. As illustrated above, there are
some patterns which are typical of encyclopedic texts only, while others of
newswire only. Thus, rule-based systems are also highly domain-specific.

A major problem with NER is the ambiguity of names. Person, loca-
tion, and organization names can be composed of the same words. For
example, the word ‘Jordan’ can be a first name, a last name, the name of
a river, a country name, or part of an organization name. Different types
of names can appear in text in similar ways. To handle this phenomenon,
a good solution is a rule competition phase that allows selecting the most
probable interpretation for a name (e.g. Krupka and Hausman [1998]), re-
sulting in a not clearly rule-based, but rather a hybrid system combining
rules and statistics.

5.3 Statistical Named Entity Recognition

In Section 5.2, rule-based NER systems were described. We men-
tioned that empirical methods returned into NLP in the 1990s, and they
have since become the most widely applied techniques. According to
Armstrong-Warwick [1993], empirical methods offer potential solutions
to several problems in NLP such as

• acquisition: automatically identifying and coding all necessary
knowledge;
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• coverage: accounting for all phenomena in a given domain or appli-
cation;

• robustness: accommodating real data that contains noise and aspects
not accounted for by the underlying model;

• extensibility: easily extending or porting a system to a new set of
data or a new domain.

Robustness and extensibility are still not properly solved, as illustrated
in Section 4.1 and in Subsection 4.2.2, respectively. Despite the fact that
gold standard corpora used for training and testing are usually cleaned,
empirical methods still offer more robustness than rule-based systems do.
And indeed, they can be ported to new datasets or new domains, at the
expense of some performance loss, but without the need to rewrite the
whole system.

Empirical methods used in NLP can be categorized along several di-
mensions. One of them concerns the style of the algorithm itself.

Most of the recent work in empirical NLP has involved statistical train-
ing techniques for probabilistic models such as probabilistic grammars and
HMMs. These methods attach probabilities to the productions of a for-
mal grammar or the transitions of a finite-state machine, estimating these
probabilities based on training data. Test examples are then analysed by
derivation from the learned grammar that generates the given string or
finding the most probable path through the automaton built. Other em-
pirical methods use other statistics such as the frequency of n-grams ap-
pearing in the language data.

However, not all empirical methods use probabilistic models. Symbolic
methods represent learned knowledge in the form of interpretable decision
trees, or logical rules. These symbolic machine learning systems stand
closer to rule-based systems in the sense that the target, in both cases, is
inducing rules from data. The difference is whether one creates a rule
system by hand or by means of a machine learning algorithm. The lat-
ter offers the promise of automating the acquisition of knowledge from
corpora. Acquired knowledge is represented in a form that is easily in-
terpreted by human developers and is similar to representations used in
manually developed systems. Such interpretable knowledge potentially
allows for greater scientific insight into linguistic phenomena, improve-
ment of learned knowledge through human editing, and easier integration
with manually developed systems [Mooney, 2004].

Another dimension along which empirical methods can be categorized
is the type of data required. Learning techniques may be supervised, semi-
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supervised and unsupervised. Supervised systems require large amounts
of previously annotated data. As illustrated in Chapter 4, manually an-
notating corpora with linguistic information is a time-consuming, highly
skilled and delicate job. Therefore, reducing annotation cost is of key im-
portance. Besides the automated creation of corpora, another approach is
to use semi-supervised or unsupervised methods, which do not require
large amounts of labelled data.

The underlying question in the case of unsupervised learning is what
we can learn from raw text. Unsupervised algorithms are not supplied
with correct labels for classification, instead they are given only raw text
that has been pre-processed only minimally, i.e. split into tokens and sen-
tences. NER can be seen as a clustering problem, where NE classes are
based on similarity of context. Words with similar grammatical behav-
ior will be assigned to the same cluster. Depending on the task, one can
pick an arbitrary number of clusters, or let the system find the appropri-
ate number of clusters. If the goal is to test how well such methods can
recover commonly used NE types, then one should use the same number
of clusters as there are NE tags. However, unsupervised methods can also
be used for finding new types of NEs. In this case, one can use a much
bigger number of clusters to capture correlations that are not captured by
classic NE tags.

Since nothing is said about the identity of each cluster, and the model
has no preference in assigning cluster 1 to person names and cluster 2 to
location names, finding the metrics for evaluation is not straightforward.
One of the applied metrics is called 1-Many [LXMLS, 2011], which maps
each cluster to the majority tag that it contains. For example, Elsner et al.
[2009] use it when mapping their three induced labels (PER, ORG, LOC) to
their corresponding gold labels in the MUC-7 test dataset, and then count
the overlap. They report 86% accuracy, which is said to be the best score
for a fully unsupervised model.

Besides clustering, there are further unsupervised methods used in
NER. These rely on lexical resources such as WordNet, on lexical patterns,
and on statistics computed using a large unannotated corpus. Cucchiarelli
and Velardi [2001] present an unsupervised method using WordNet for
context generalization. They suggest that the use of such complementary
methods can increase the robustness of any supervised or rules-based NE
tagger. They extract syntactic and semantic contextual knowledge from
unannotated data, using more fine-grained evidence than supervised sys-
tems do.

Unsupervised learning is an increasingly active field of NER research.
Besides the already mentioned pragmatic reason, namely that annotated
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corpora are scarce resources, several other motivations have pushed re-
search in this direction. From both a linguistic and cognitive point of view,
unsupervised learning is useful as a tool to study language acquisition.
From a machine learning point of view, unsupervised learning is fertile
ground for testing new methods, where significant improvements can still
be made.

The distinction between supervised and unsupervised systems is not
always clear. In some systems that are apparently unsupervised, one
could argue that the human labour of generating labelled training data has
merely been shifted to embedding linguistic knowledge and heuristics in
the system. There are some systems which cannot be said to be supervised
since they do not use manually annotated data, but they do start with man-
ually constructed example lists of NEs, often called learning seeds. This
approach is usually called semi-supervised learning. For example, Nadeau
et al. [2006] present a NER system which requires no human intervention
and can handle more than just the three classic NE types. They claim the
system is unsupervised, even though it uses a seed of four NEs per list,
which bootstraps the learning process. Similarly, Collins and Singer [1999]
show that the use of unlabelled data can reduce the requirements for su-
pervision to just seven simple seed rules. This approach gains leverage
from natural redundancy in the data, since for many NE instances both
the spelling of the name and the context in which it appears are sufficient
to determine its type, they argue.

5.3.1 Supervised Named Entity Recognition

Although building semi-supervised and unsupervised systems is an
emerging field of NER, the currently predominant technique is supervised
learning. In this subsection, we first give an overview of methods used for
supervised NER. Systems based on different learning methods are all vari-
ants of the supervised approach that typically involve a system that reads
an annotated corpus, extracts features, builds model from them, then as-
signs pre-defined NE labels to tokens or phrases of a previously unseen
text. The remaining part of this subsection describes this workflow in de-
tail.

Methods used for supervised learning

Methods used for supervised learning are based on the assumption that
datapoints (in the case of NER, tokens) are independent elements of the
text. Tokens are identically distributed, and this fact makes it possible to
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use the model trained on the training dataset for tagging new, previously
unseen datasets. The assumption behind this is that new data has the same
probability distribution as the training data.

The standard way to approach the problem of NER is as a sequence la-
belling task, which correspond to a chain structure, for example, the words
in a sentence. These kinds of supervised methods are based on the sce-
nario of structured prediction, where inputs are assumed to have tempo-
ral or spatial dependencies. HMMs, maximum entropy Markov models
(MEMMs) and Conditional Random Fields (CRFs) are sequence classifiers.
A sequence classifier is a model whose job is to assign labels to each unit
in a sequence.

The HMM is one of the most common sequence probabilistic models
and has been applied to a wide variety of NLP tasks. In NER, an under-
lying learning algorithm emits probability distribution on tags to a token
sequence. These tag emission probabilities show the probability of tags
given a feature or a set of features. For example, in a highly simplified
system where only one feature is used, P (ORG | iscap) is the probability
of getting ORG label when a token is capitalized. In real systems, however,
a vector of a large number of features is assigned to each tag. Transition
probabilities of a first-order HMM are probabilities of transitions between
particular pairs of tags. For instance, P (LOC | ORG) is the probability
that an organization name is followed by a location name in a sentence.
Transition probabilities can be counted in an annotated corpus. To calcu-
late the most probable tag sequence for a whole sentence, several decoding
algorithms, e.g. the Viterbi algorithm can be applied. HMMs for NER are
used by e.g. Bikel et al. [1997]. The hunner system [Varga and Simon,
2007] also uses HMM and Viterbi, as described in Subsection 5.3.2. For
more details on HMMs and the Viterbi algorithm, see e.g. Jurafsky and
Martin [2000].

Other sequential models are MEMMs and CRFs. Both can be seen
as extensions of the maximum entropy model to structured prediction
problems. MEMM is an earlier, less successful attempt to perform such
an extension [McCallum et al., 2000]. In this model, each node or edge
of the Markov model is a locally normalized maximum entropy model.
The shortcoming of MEMMs is the so-called label bias problem. MEMMs
model the distribution of a label based on current observations and the
previous label. In the training phase, when predicting the next label,
MEMM uses gold standard labels, while in the test phase, there are no gold
standard labels, so the prediction is based on the previous label emitted by
the MEMM, which is not necessarily right [Farkas, 2007]. On the contrary,
CRFs are globally normalized models, thus they compute the probability
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of a whole sentence, not local probabilities [Lafferty et al., 2001]. CRFs are
successfully used for NER, they are reported to achieve the highest scores
(e.g. McCallum and Li [2003]). In spite of this fact, we do not use CRFs,
since training time is an order of magnitude higher than that of maximum
entropy models, due to the large number of features used.

On the other hand, maximum entropy by itself is not a sequence classi-
fier; it is used to assign a label to a single datapoint, in the case of NER, to
a token. In that sense, maximum entropy models are token-based. For more
details on maximum entropy, see Subsection 5.3.2. Another kind of token-
based methods is the Naive Bayes classifier, which is used for NER, for
example, by Zhang et al. [2004], for finding the most typical NEs among
all NEs in a document, and by Tanabe et al. [2005], for predicting gene
and protein names in documents. Since our results do not rely on Naive
Bayes models, we direct the reader to Jurafsky and Martin [2000] for a
more complete discussion.

Besides sequential versus token-based categorization, supervised
methods may also be broken down along another dimension, namely
what they intend to model. From this point of view, there are genera-
tive and discriminative methods. Generative methods attempt to model
the joint probability P (X, Y ) that generates the data, where X is the ob-
servation set and Y is the label set which the system emits. Instead of
maximizing joint probability, as generative approaches do, discriminative
methods maximize directly the conditional probability P (Y | X). The ra-
tionale behind this is that one does not need to waste effort on modelling
the distribution of input data, if all we want is an accurate estimate of
P (Y | X), which is what matters for predicition. Table 5.2 sums up the
methods mentioned above [LXMLS, 2011].

Token-based Sequential

Generative

Naive Bayes Hidden Markov Model

Discriminative

Maximum Entropy Conditional Random Fields
Maximum Entropy Markov Models

Table 5.2: Summary of methods generally used for NER.
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The workflow of supervised learning

Independent of the method used for recognizing and classifying NEs
in text, supervised learning approaches all involve the same elementary
steps. As described in detail in Chapter 4, supervised systems need a large
amount of data previously enriched with linguistic annotation. The algo-
rithm learns its parameters from a corpus, and its evaluation also involves
comparing its output to a gold standard annotation.

When trying to compute the probability of a sequence, e.g. one contain-
ing NEs, evaluation must not be biased by including any sentence from
the training data in the dataset used for evaluation. For this reason, super-
vised learning always starts by dividing the data into a training and a test
set.

In some cases, we need more than one dataset for evaluation. In the
case of shared tasks, for example, organizers first provide a training and
a development set, the former for training our model and the latter for
testing our system during the development process, for measuring the
discriminative power of features, and for experimenting in general. Re-
searchers then submit the system which is proved to be the best on the
development set. The test set is usually provided just before submission
deadline and is used to measure the performance of systems. It is not al-
lowed to run the system on the test set more than once. This is not simply a
case of fair play; using the test set as a development set and tuning the sys-
tem for achieving better scores on it will not illustrate the real performance
of the system. This phenomenon is known as overfitting. Overfitting oc-
curs when the model adapts to random noise present in the training data
rather than learning to generalize from its parameters.

In the absence of a development set, the method of n-fold cross-
validation is often used to train and evaluate on the same corpus. One
round of cross-validation involves partitioning the whole dataset into
complementary subsets, training on one subset, and testing on the other
one. Multiple rounds of cross-validation are performed using different
partitions, and the evaluation results are averaged over the rounds. ‘n-
fold’ means that the whole dataset is divided into n parts, and usually
n− 1 nth of the data is used for training, and 1 nth is used for testing. This
is repeated n times, with a different partition used for evaluation in each
run. Thus, cross-validation is a way to predict the fit of a model to a hypo-
thetical evaluation set when an explicit evaluation set is not available.

When building a supervised machine learning system, a major step is
feature extraction: collecting information from the data that can be relevant
to the task. In the case of NER, such pieces of information can be simple
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orthographic properties, morphological information, as well as gazetteer
list inclusion of the inspected datapoint and other datapoints in its neigh-
bourhood. At the end of the featurizing step a feature vector containing
all relevant information is assigned to every datapoint.

The next step is model building, where the task of the algorithm is to
find regularities in this large amount of information. Since the training
data contains datapoints with gold standard labels, the algorithm builds a
model based on feature–label pairings.

In order to tag the test set with the appropriate labels, the model must
have access to feature vectors of datapoints in the test set. Therefore, fea-
tures used for training must be extracted from the test set. Given the fea-
ture vectors, the model can predict labels for the new datapoints.

As mentioned above, evaluation of NER systems is performed by com-
paring the system’s output to gold standard labels. The standard evalua-
tion metrics are based on the following terms:

true positive: the system outputs the correct NE label;

true negative: the system correctly outputs O, i.e. it recognizes that the
inspected datapoint is not a NE;

false positive: the system outputs unexpected result, i.e. it identifies a
non-NE as a NE;

false negative: the system does not recognize a NE.

Based on these values, precision and recall are calculated over all NE
slots. They are defined as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

The measure combining precision and recall is their weighted har-
monic mean, the Fβ-measure:

Fβ = (1 + β2)× precision× recall
β2 × precision+ recall

In NER, β is usually equal to 1, thus recall and precision are evenly
weighted. This is called F1-measure. Depending on the application, F-
measure can be used with higher or lower β, where the former weights
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recall higher than precision, while the latter puts more emphasis on preci-
sion.

Another type of error in NER is when the system does not find the cor-
rect boundaries of a NE. Scoring techniques differ in handling this kind
of error. In MUC evaluations, a system is scored on two axes: its ability
to find the correct type and its ability to find the exact boundaries of NEs
in the text. The final F-measure is then calculated on both axes, thus type
and boundary scores are summed up. This scoring system gives partial
credit to errors occurring on one axis only, while missing both type and
boundary results in a double loss. The CoNLL scoring protocol, on the
other hand, follows the so-called exact match evaluation. In this protocol,
a prediction is judged to be correct only if it has the same type and the
same start and end positions as the gold standard datapoint. The CoNLL
F-measure is more strict, thus these values are lower than those in MUC
evaluation. This is why systems competing in MUC shared tasks appar-
ently achieve higher scores (93.39%) than those in CoNLL (88.76%).

In shared task evaluation, a baseline system is usually presented to
determine the minimal expectations for performance. Several baseline
counting methods are in use, but the most widely used one is when ev-
ery NE has the same label, namely the most frequent one among all NEs.
This method is used e.g. by Elsner et al. [2009] and by Markert and Nissim
[2007b] in the metonymy resolution shared task.

5.3.2 Hungarian Named Entity Recognition with a Maxi-
mum Entropy Approach

In this subsection, we describe hunner, a language-independent NER sys-
tem applied to Hungarian. Since its first version [Varga and Simon, 2006,
2007], the system has evolved in various ways. It was reimplemented and
thereby generalized to other NLP tasks besides NER. In a next step, the
underlying optimization system that used L-BFGS algorithm [Zhu et al.,
1997] was replaced by the Liblinear classifier [Fan et al., 2008]. This
version was renamed, and it is now available as huntag4. In the subse-
quent description, we present the original system5 with notes on modifi-
cations made during the reimplementation. We always refer to the system
as hunner when writing about its application to the NER task.

For major languages, hundreds of papers were published on NER al-
gorithms, not many of which have language-dependent components. For

4https://github.com/recski/HunTag/
5The system description is based on our article [Varga and Simon, 2007].
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Hungarian, we are aware only of one quantitative study of a NER sys-
tem based on machine learning methods. Szarvas et al. [2006b] published
results on their NER system based on C4.5 decision trees with boost-
ing. Their system achieved state-of-the-art performance for English, and
reached 94.77% CoNLL F-measure for Hungarian.

Architecture

Our system roughly follows the architecture described by Borthwick
[1999] and Chieu and Ng [2003], incorporating some ideas introduced by
Klein et al. [2003]. We use the maximum entropy method, which has been
already successfully used in several NLP tasks. As shown in Subsection
5.3.1, the maximum entropy method is discriminative, and it focuses on
finding a separating hyperplane to discriminate among classes. It pro-
vides a token-based classification, thus feature vectors are assigned to to-
kens, not sequences. However, information on the immediate context of a
token are not lost with this approach, since they can be added as contex-
tual features to the inspected token’s feature vector.

We have chosen Zhang Le’s maximum entropy implementation6 be-
cause of its high performance. This implementation uses the L-BFGS al-
gorithm [Zhu et al., 1997] for model building. There are two different for-
malizations of the learning task, both leading to the maximum entropy
method. One formalization is based on the concept of entropy. In this case,
the basic rationale is that choosing the model with the highest entropy cor-
responds to making the fewest possible assumptions regarding what was
unobserved, trying to make uncertainty of the model as high as possible
[LXMLS, 2011]. The L-BFGS algorithm follows this approach for model
building. The second formalization treats the question as a linear regres-
sion problem. The Liblinear library supports this approach. Since the
first runs showed that overall F-measures achieved by using Liblinear
are not significantly better than those achieved by L-BFGS, Liblinear
requires more memory, and its running time is much longer, here we deal
with the former approach.

L-BFGS is an iterative learning algorithm, which starts to converge af-
ter approx. 100 iterations on our datasets. Our originally published num-
bers are based on 300 iterations. Later experiments proved that when
training on a typical gold standard dataset such as the CoNLL-2003 or
the Szeged NER corpus, 200 iterations are generally sufficient. However,
when using a much larger dataset such as the Wikipedia corpus, more

6http://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit.html
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iteration steps are required by the model to reach the highest training ac-
curacy. In the original system, the running time of 300 iterations was quite
high (approx. 1 hour), but after the reimplementation, it was reduced to a
few minutes. One of the great advantages of maximum entropy modelling
is that it is much faster than, for example, its sequential counterpart, the
CRF.

We use a very high total number of features. The 200,000 token corpus
is represented by 10 million instances of 250,000 different kinds of features.
The maximum entropy approach is capable of dealing with such a high
number of features without the feature selection phase needed by some
other machine learning methods. Nevertheless, the system has a function
by which the number of training events, i.e. the feature space can be re-
duced. This parameter is called cutoff. If the cutoff is equal to 1, then every
feature occurring at least once is considered in model building. Since the
maximum entropy method is capable of handling enormously high num-
ber of features, we do not need to set this parameter higher. However,
if setting a higher value causes significant decrease in performance, this
suggests that the model is overfitted on the training data.

The algorithm builds a model based on feature–label pairs, with each
pair being assigned a weight showing how the feature changes the like-
lihood that a token will get that label. To avoid overfitting, we can add
a Gaussian prior, which penalizes large weights. This regularization term
was not part of the original system, so our results given here are not ef-
fected by any penalty.

The NER task in its original form deals with the classification of un-
known contiguous token sequences, and it is not immediately obvious
how to formulate it as a token classification task. Instead of using classic
CoNLL labels (O, LOC, ORG, PER, MISC), we chose the following so-
lution: every token must be classified into one of 17 different classes: {O,
B-LOC, I-LOC, E-LOC, 1-LOC, B-ORG, ..., 1-MISC}, where B,
I and E mean the beginning, interior, and end of the NE, respectively, and
1 means that the word is in itself a NE. There are two major advantages of
this approach. First, the machine learner can more easily recognize corre-
lations that are specific to the start or the end of NEs. Second, the tagset
has implicit built-in consistency requirements: e.g. B-* cannot follow I-*.

One important characteristic of maximum entropy learning is that dur-
ing classification it emits a full probability distribution on tags, instead of
just the single most likely tag. This gives us the ability to override local de-
cisions if they prove to be inconsistent with each other. First we query the
model built by the maximum entropy algorithm for tag emission prob-
abilities for each token. We then define transition probabilities between
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tags as follows: transition probabilities for illegal transitions (e.g. B-ORG
B-LOC) are set to be zero, and every legal transition (e.g. B-ORG I-ORG)
is set to be equiprobable. Since here we investigate tag bigrams, this con-
struction can be seen as a first-order HMM, on which we can apply a
decoding algorithm to find the most probable tag sequence. We use the
Viterbi algorithm, which maximizes the joint transition-emission proba-
bility for a whole sentence. Thus the resulting tag sequence is necessarily
well-formed. According to our measurements, this parameterless post-
processing step improves the system’s F-measure by approx. 0.5% in typ-
ical measurement setups.

Table 5.3 shows an example token sequence from the Szeged NER cor-
pus with its gold standard and predicted labels and probabilities emit-
ted by the algorithm. C1 and C2 mark predicted classes, while P1 and
P2 are probabilities assigned to those classes. If we did not use any de-
coding algorithm, but took into account only the highest local probabili-
ties, we would get the following tag sequence: O B-ORG I-ORG B-ORG
E-ORG O. When using the Viterbi-algorithm, illegal transitions are not al-
lowed, so two competing consistent hypotheses remain: O B-ORG I-ORG
I-ORG E-ORG O and O 1-ORG O B-ORG E-ORG O. After calculating
joint transition-emission probabilities, the first sequence is computed to
be the most probable, and it is the right choice.

Token Gold C1 P1 C2 P2

az O O 1
Investicna B-ORG B-ORG 0.92 1-ORG 0.08
a I-ORG I-ORG 0.96 O 0.04
Rozvojova I-ORG B-ORG 0.65 I-ORG 0.35
Banka E-ORG E-ORG 1
( O O 1

Table 5.3: An example token sequence to illustrate how the Viterbi-
algorithm works.

During the reimplementation of the system, there has been a change in
the way transition probabilities are defined. Instead of manual setup, in
the current version of the hunner system, transition probabilities are cal-
culated based on the training corpus. The system has a built-in function to
build a language model using some annotation of the training data. In the
case of NER, this annotation is obviously the gold standard NE labelling.
Any corpus can serve as a training corpus which has NE labels in BIE1
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format, but usually the same corpus is used for building language model
as for training the observation model. In its current version, the language
model is based on label bigrams, but this can be expanded even to trigrams
or more-grams. However, as our experiments show, the bigram model suf-
fices for decoding on NE labels. The weight of the language model in the
prediction of NE labels can also be configured. If a higher value is given
to the language model, the contribution of transition probabilities will be
more than that of the probabilities emitted by the maximum entropy al-
gorithm. Based on tests on the CoNLL-2003 development dataset, tagging
with a balanced language model weight (lmw=1) gave the best overall F-
measure.

Feature extraction

Chapter 6 gives a detailed description of several types of features gen-
erally used in NER. Here we simply enumerate the features used in the
original system.

Most of our features deal with very easily computable surface proper-
ties of tokens, but we also use morphological information of tokens and
gazetteer lookup features. The complete list of features used by our origi-
nal system is as follows:

The token’s position in the sentence: sentence start, sentence end.

Boolean-valued surface properties of the word form: upper case, all up-
per case, contains capitalized letter after non-capitalized (camel cas-
ing, e.g. iPod), is a number, contains a number, contains a dash, con-
tains a period.

String-valued surface properties of the word form: the word form itself,
the five-letter prefix, and all consecutive character trigrams of the
word form.

String-valued morhological information: POS tags and lemmas pro-
vided by the hundisambig morphological disambiguator.

Boolean-valued features concerning morphology: is the word form rec-
ognized by hundisambig? Is the identified lemma capitalized dif-
ferently than the token itself?

Gazetteer features: if the token is included in one of the gazetteers, it re-
ceives a feature containing the name of the list and also information
about whether the token is in the beginning, middle or final position
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of a multi-word name (e.g. firstname=start, street=mid). If
the token by itself matches to a one-word name, it receives a *=lone
feature. To deal with morphology, when determining whether a
word matches a multi-word name, the last word was treated dif-
ferently: matching on a suitably chosen prefix was enough. This
corresponds to the way Hungarian multi-word names are inflected.

For example, the Gyula token in a sentence starting position gets the
following features:

• Boolean-valued surface features: sentstart=1 sentend=0
iscap=1 allcaps=0 camel=0 isdigit=0 hasnumber=0
hasdash=0 hasperiod=0

• String-valued surface features: form=Gyula prefix=Gyula
ngr=Gyu ngr=yul ngr=ula

• Morphological features: pos=NOUN lemma=Gyula

• Gazetteer features: firstname=lone city=lone
familyname=lone corp=start

The system collects these pieces of information for each individual to-
ken of a sentence. To incorporate context, we simply add features of neigh-
bouring tokens, recording their relative positions. For example, if a token
gets the feature -2 iscap=1, it means that the token two positions before
is capitalized. The size of the context window for a given feature is a pa-
rameter of our system, which can be set for each feature separately. In the
original system, we used a context radius of 3 (that is, a seven-token inter-
val) for character n-grams and prefixes, and context radius 5 for the rest of
the features.

Gazetteers

We assembled various gazetteers to be incorporated into our system.

• Hungarian and common non-Hungarian last names

• Hungarian and common non-Hungarian first names

• names of Hungarian cities

• country names in Hungarian
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• Hungarian street names

• Hungarian organization names

• international organization names

• suffixes for company names

• suffixes for street names

• financial acronyms

In the first six cases, our source was an aggregated version of a Hungar-
ian phone book and a web database. The lists of Hungarian organization
names and street names were cleaned of suffixes with automatic methods.
Common suffixes were extracted and moved into separate lists. The in-
ternational organization list was kindly provided to us by György Szarvas
and Richárd Farkas.

The gazetteers incorporated into our system were finalized before the
inspection of the training and development corpora. During the tuning
of the system to the development corpus, we have found serious cases
of over- and undergeneralization in the gazetteers. Since correcting these
errors did not improve performance significantly, we reverted to the orig-
inal, uncorrected, automatically collected versions.

There was only one case when analysis of the development corpus lead
to the inclusion of a new dictionary: the lexicon of financial acronyms.
The development corpus contains several stock market index names
(e.g. DAX, Libor, Nasdaq), which were sometimes marked as ORG instead of
MISC by the model. To solve this problem, we extracted such stock market
terms from a web-based financial knowledge base. We note that using this
lexicon did not improve the performance on the test corpus, and even de-
creased it slightly. The reason for this is that most of these terms occurred
only in the development set.

Similarly to the source code of the system, we published the gazetteers
under a free document license 7.

Evaluation

We started early development of our system with an ad hoc train–test split
of the Szeged NER corpus. But it quickly became apparent that if we in-
tend our results to be comparable to the only existing quantitative study

7They are available via the URL http://krusovice.mokk.bme.hu/∼eszter/ner listak.

100



on Hungarian NER, we have to switch to the train–development–test split
used by Szarvas et al. [2006b]. They were kind to provide this split, and
from this point, we followed the standard methodology: we optimized the
parameters of the system guided by the F-measure on the development
corpus, and only evaluated on the test corpus once, after the optimization
phase was finished.

Table 5.4 shows the results of our original system for Hungarian with
the architecture and feature set described above. We reached a CoNLL F-
measure of 96.35% on the development corpus and 95.06% on the test cor-
pus. This is a minor improvement on the numbers published by Szarvas et
al. (we do not have access to their development results for each NE type).

NE type Szarvas devel Szarvas test devel test

LOC 95.07 92.06 96.36
MISC 85.96 93.58 85.12
ORG 95.84 97.62 96.20
PER 94.67 97.44 94.94

Overall 96.20 94.77 96.35 95.06

Table 5.4: Results of the original hunner system on the Szeged NER cor-
pus, compared to Szarvas et al.’s results.

We measured the effect of each major subset of features. The overall
F-measure of the system is 95.06% on the test corpus. Removing just the
Boolean-valued surface features decreased this score to 92.37%. Remov-
ing just the character n-gram features decreased the score to 90.04%. The
gazetteer and morphological features had significantly less effect: remov-
ing these decreased the score to 94.69% and 94.70%, respectively. Note
that these two sets of features are exactly the ones that require external
resources. Removing both of them lead to a resourceless system without
seriously affecting the score: the resourceless system had an F-measure of
94.73%.

As can be seen from this description, our system is a modularized one,
thus the components can be changed if needed, and none of the modules
are language-dependent. The only elements which require external re-
sources are the morphological and gazetteer features, and removing them
does not cause a significant decrease in the performance for Hungarian.
Thus, our system can also be used for recognizing NEs in other languages.
Moreover, it can be applied to several other NLP tasks. Its reimplemented
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version has been used for English NER [Simon and Nemeskey, 2012]
(cf. Subsection 4.3.4), for recognizing metonymic NEs in English [Farkas
et al., 2007] (cf. Subsection 3.3.2), and for classification of semantic rela-
tions between pairs of nominals [Hendrickx et al., 2010]. In addition, it
has been also used for shallow syntactic analysis of Hungarian texts [Rec-
ski and Varga, 2010], but we did not contribute to that work.

task train test F (%)

Hu NER Szeged wikilists Szeged 95.48
En NER CoNLL wikilists CoNLL 86.34

En metonymy resolution
loc-coarse SemEval-2007 SemEval-2007 85.20
org-coarse SemEval-2007 SemEval-2007 76.70

En semantic relations SemEval-2010 SemEval-2010 66.33

Hu chunking Szeged Treebank Szeged Treebank 89.87

Table 5.5: Best overall F-measures achieved by our system on several tasks.

Table 5.5 summarizes the best overall F-measures achieved by our sys-
tem on several tasks. The results for NER and metonymy resolution are
repeated from Chapters 4 and 3, respectively. The classification of seman-
tic relations between pairs of nominals was a SemEval-2010 shared task,
to which our system was submitted. The results published here (66.33%
F-measure on the test set provided by the organizers) was the 8th in the
competition, so we decided not to write a system description paper. The
task description and results of all submitted systems are reported in Hen-
drickx et al. [2010]. The result is mentioned here only to illustrate the wide
variety of NLP tasks for which our system can be used. And last, but not
least: the reimplemented huntag system is applied for shallow parsing
under the name hunchunk [Recski and Varga, 2010]. For Hungarian, it
was trained on the Szeged Treebank [Csendes et al., 2005].

5.4 Conclusion

The task of NER can be approached in two ways: by manually coding reg-
ular expression patterns or by automatically extracting relevant informa-
tion and using some machine learning technique. Both have advantages
as well as disadvantages. Manually developing a rule-based system and
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handling a large number of rules is quite difficult, requiring a great deal
of domain-specific knowledge engineering. In addition, these systems are
brittle and not portable between different domains or tasks. Empirical
methods, on the other hand, offer potential solutions to several problems
in NLP, e.g. knowledge acquisition by means of automatic learning tech-
niques, coverage by means of large amounts of data, robustness by means
of frequency-based algorithms, and extensibility by means of portable sys-
tems. Although these problems are still not properly solved, using empir-
ical methods results in higher performance.

The current dominant technique used in the field of NER is supervised
learning. Its disadvantage is that it requires large amounts of previously
annotated data, so one might say that the human labour of creating rules
has only been shifted to that of building corpora. However, there is a quite
new, emerging field of NLP and of NER in particular, which involves us-
ing unsupervised or semi-supervised techniques. In these cases, human
labour has also been shifted to constructing seed examples and/or em-
bedding heuristics in the system. Unsupervised learning is a field where
significant improvements can be made in the future. Another future direc-
tion is hybridization, combining the strengths of rationalist and empiricist
methodologies.
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Chapter 6

Feature Engineering

Features are descriptors or characteristic attributes of datapoints in text.
In supervised learning, feature vectors are assigned to datapoints, each of
which contains one or more Boolean- or string-valued features. Feature
vector representation is a kind of abstraction over text. The task of the
algorithm is then to find regularities in this large amount of information
that are relevant to the classification task; in this case, to NER.

NER is a typical sequence labelling task, i.e. the model has to assign
NE labels to sequences, e.g. sentences in text. Several machine learning
algorithms, however, such as maximum entropy modelling, realize it as a
token-based classification task. Contextual information is not lost, since
the features of neighbouring tokens can be added to the inspected token’s
feature vector.

In this chapter, we present the features most often used for NER in the
token-based classification scenario. We categorize features along the di-
mension of what kind of properties they provide: surface properties, digit
patterns, morphological or syntactic information, or gazetteer list mem-
bership. We also study the effect of gazetteer list size on the performance
of NER systems.

Defining features for a supervised system is manual work, similar to
coding patterns for a rule-based system. However, in the case of statis-
tical methodology, it is the data and not the linguist that determines the
usefulness of a feature. The human cognition tends to realize only salient
phenomena and will regard as important properties some that are then
shown to be unimportant by corpus data and conversely, will fail to notice
important ones. For this reason, the power of features has to be measured
on real data before inclusion into the system. This is called feature engi-
neering.
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6.1 Methods

To measure the strength of features, we build NER systems for Hungarian
and English in parallel, adding new features one by one. If the inspected
feature is useful, we retain it and add the next one to the system. We
consider a feature useful, if adding it does not decrease the performance.
The rationale behind this decision is that if a feature does not make things
worse on the development set, it may be effective on the test set. Figures
indicating F-measures achieved by the system after adding a useful feature
are italicized in tables.

There are several feature selection methods used in machine learning
which select of a subset of relevant features for inclusion in the model.
The simplest algorithm is to test each possible subset of features and find-
ing the one which maximizes the F-measure. An exhaustive search of the
feature space, however, is generally impractical. Since we work with a
large number of features and can rely on results from previous experi-
ments, we decided to choose an incremental method of feature selection.
In this scenario, we start with an arbitrary feature subset, then attempt
to find a better solution by incremental extension of the subset with new
features. After each step, the system’s performance is evaluated and com-
pared to the previous results. The feature subset achieving the best overall
F-measure is then retained.

Selection of the initial feature of each feature category is based on pre-
vious experiments: the strongest feature is added first. In this feature se-
lection scenario, however, there are some features which would not be
removed if they were added to the system in a different order. Since these
features cause insignificant changes in performance, we are probably not
off the track when removing them.

As described in Subsection 5.3.2, the hunner system has built-in pa-
rameters for setting the number of iterations, the Gaussian penalty, the
weight of the language model, and the number of features used for model
building (cutoff). We set these parameters so as to keep the system as
neutral as possible. Thus, we do not apply Gaussian penalty and set the
cutoff to 1, which means that all features are taken into account in model
building. The language model weight is set to 1, thus the emission prob-
abilities of the maximum entropy model and the transition probabilities
of the HMM have equal weights. All experiments are run with 110 itera-
tions, which has proven to be sufficient even with such a large number of
features.

We use the reimplemented hunner system described in Subsection
5.3.2. Since it is language-independent, it can be used for Hungarian and
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English in parallel. For Hungarian, we use the same train–development–
test split of the Szeged NER corpus that was used for the evaluation of
the original hunner system. For experiments on English, we use the stan-
dard train–development–test sets of the CoNLL-2003 corpus. Unless men-
tioned otherwise, the results should be interpreted as standard F-measures
(%) achieved on these development datasets. Finally, we evaluate the
best feature combination on the corresponding test sets and measure the
strength of each feature subset.

6.2 Surface Properties

A wide range of features are related to the character makeup of tokens,
which are very easily computable surface properties. Surface features can
be divided into two main classes: string-valued and Boolean-valued sur-
face properties. These features are described in the next two subsections.

6.2.1 String-valued Surface Properties

Several applications use lists extracted from training corpora as part of a
language model. Chieu and Ng [2003], for example, derive lists of frequent
and rare words, typical words that precede instances of a name class, and
function words. These list features have effects similar to those of using
the token’s word form or its substrings as features (features based on ex-
plicit gazetteer lists are discussed in Section 6.5). Klein et al. [2003] present
a NER system based on character n-grams of tokens only. These experi-
ments confirm that using the token’s word form and its substrings as fea-
tures is very useful for NER.

We applied similar features: using only the word form of tokens in the
training corpus as features in a 3 tokens radius, and nothing else, results
in a 90.68% F-measure for Hungarian. The same run for English gives
a result of 80.85%. Setting the radius to 2 increases the score to 81.79%.
This difference can be attributed to the fact that Hungarian is a highly
agglutinative language and the learning algorithm needs more training
data to deal with the great variety of word forms. From here on, the default
radius values will be fixed at 3 for Hungarian and 2 for English.

Adding character n-grams to the set of features results in a signifi-
cant increase in performance both for Hungarian and English. Table 6.1
presents the results of experiments with bi-, tri-, and four-grams. Using
bigrams gives the best result, we therefore retain it: the next run uses
word form and bigram features, to which we add the n characters prefix
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of the token as a new feature. This feature was also applied in the original
hunner system as a simple substitute for lemmatization. Since adding the
prefix feature increases the F-measure for both languages, it is kept as a
useful feature.

feature Hungarian English

word form 90.68 81.79

+ngram
2gram 93.39 83.54
3gram 92.24 83.51
4gram 92.12 83.41

+prefix
4prefix 93.30 84.57
5prefix 93.66 84.74
6prefix 93.21 84.90

+suffix
3suffix 92.85 85.95
4suffix 93.12 86.31
5suffix 93.21 85.97
6suffix 93.38 85.86

+longpatt 94.92 87.21
+shortpatt 95.10 87.41

Table 6.1: Results of adding string-valued surface features one by one to
the system.

Suffixes are also important from the point of view of morphology.
Some word endings can aid recognition of several types of NEs. For exam-
ple, in English, names of nationalities and languages often end in -ish and
-ian (e.g. English, Hungarian). It is interesting that increasing the number of
characters in prefix and suffix features has the inverse effect on the perfor-
mance for the two languages. While longer prefixes increase performance
for English, the increase stops after five characters for Hungarian. Suffixes
show the opposite behaviour, i.e. they can get lengthened arbitrarily for
Hungarian only. Increasing this parameter above a certain value would
eventually be equivalent to the duplication of the word form feature. The
linguistic explanation behind this phenomenon may be the high variabil-
ity of word endings in Hungarian: there are no typical suffix classes stand-
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ing out, at least in such sparse data, while four characters are enough for
typical English endings to appear. Since the suffix feature decreases the
overall F-measure for Hungarian, it is removed from the Hungarian sys-
tem. For English it is retained, its length fixed at four characters.

Pattern features were introduced by Collins [2002] and later used by
others [Cohen and Sarawagi, 2004; Settles, 2004]. Their role is to map to-
kens onto a smaller set of patterns over character types. We use these
features in both a longer and a shorter, condensed version. The long pat-
tern feature maps all upper case characters to ‘A’, all lower case ones to ‘a’,
and the rest to ‘ ’. For example, the token MTI-t (‘MTI.ACC’) is mapped
to ‘AAA a’. In the short version, consecutive character types are not re-
peated: ‘A a’. Both versions proved useful, so we retain them.

6.2.2 Boolean-valued Surface Properties

There is quite a wide range of surface properties which can be described
by Boolean-valued features. They are formalized as regular expressions,
thus, if a token matches the pattern, a feature like iscap=1 will be as-
signed to it. Boolean-valued surface properties can be divided into further
subcategories. First, we add features to the system that concern casing.
Similar features are used by most NER systems (e.g. Bikel et al. [1999];
Mayfield et al. [2003]). The features are as follows:

hascap: the token contains one or more upper case letters, e.g. EasyJet;

allcaps: contains only upper case characters, e.g. XP;

capperiod: comprises one upper case letter and a period, e.g. A.;

camel: is in camel case, e.g. iPad;

3caps: comprises three upper case characters, e.g. IBM;

iscap: its initial letter is upper case, e.g. London.

Note that some of these features overlap. For example, the token ‘iPad’
is assigned both the camel=1 and the hascap=1 features. This does not
cause problems since maximum entropy models are designed to handle
feature overlap. While a high degree of overlap is theoretically not harm-
ful, it has practical disadvantages: it may slow down run-time perfor-
mance, and may require a higher number of iterations [Borthwick, 1999].
At this point in building our system, training accuracy starts to converge to
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its maximum after the 42nd iteration, and the whole featurizing–training–
testing process takes only 4 minutes altogether. Therefore, we do not need
to be concerned with the problem of overlapping features.

feature Hungarian English

best so far 95.10 87.41

+hascap 95.29 87.14
+allcaps 95.29 86.95
+capperiod 95.30 87.27
+camel 95.30 87.41
+3caps 94.92 87.10
+iscap 95.46 86.25

Table 6.2: Results of adding Boolean-valued surface features concerning
casing one by one to the system.

As can be seen from the figures in Table 6.2, adding these features one
by one slightly increases the performance of the Hungarian system. Only
the 3caps feature decreases the F-measure, which we therefore discard.
None of these features improves the English system, however. The camel
feature alone does not decrease the performance, since there are no tokens
in camel case in the development set. However, this may be different in
the test set, so we keep this feature, while all other features concerning
casing are removed from the English system.

The second category of Boolean-valued surface features is that of digit
patterns. Digits can express a wide range of useful information such as
dates, percentages, intervals, or identifiers. Digit pattern features are par-
ticularly useful for tasks like the MUC shared task, which aim at recogniz-
ing these elements of text. In the case of CoNLL datasets, where dates are
of no interest, digit pattern features can predict that the token matching a
typical date pattern is probably not a NE. Similar features are widely used
in NER, for example by Bikel et al. [1999] and Zhou and Su [2000]. The
features are as follows:

2digit: the token is a two-digit number, e.g. 22;

digitcomma: comprises digits and a comma between them, e.g. 200,000;

4digit: is a four-digit number, e.g. 1979;

digitdash: comprises digits and a dash, e.g. 2011-12;
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hasdigit: contains a digit anywhere, e.g. Boeing-767;

startswithdigit: starts with a digit, e.g. 2000-ben (‘in 2000’);

digitslash: comprises digits and a slash between them, e.g. 2011/12;

isdigit: contains only digits, e.g. 11;

1digit: is a one-digit number, e.g. 4;

yeardecade: is a two- or four-digit number followed by an s, e.g. 80s.

feature Hungarian English

best so far 95.46 87.41

+2digit 95.73 86.99
+digitcomma 95.91 87.16
+4digit 95.91 86.98
+digitdash 95.64 87.40
+hasdigit 95.91 87.30
+startswithdigit 95.37 87.73
+digitslash 95.55 87.60
+isdigit 95.91 87.45
+1digit 95.73 87.17
+yeardecade 95.91 87.65

Table 6.3: Results of adding Boolean-valued surface features concerning
digit patterns one by one to the system.

Table 6.3 shows the results. Performance on the Hungarian data
reaches the score of 95.91% after adding the 2digit and digitcomma
features, after which none of the newly added features increase this value.
The 4digit, hasdigit, isdigit, and yeardecade features do not
change the overall F-measure, since there are no tokens in the training data
that match these patterns. We remove those features that decrease the F-
measure and keep those which do not have a negative effect. Quite coun-
terintuitively, only one digit feature, the startswithdigit improves the
F-measure on the English data.

The third category of Boolean-valued surface features are concerned
with punctuation. The features are as follows:
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hasdash: the token contains a dash, e.g. MTI-t (‘MTI.ACC’);

hasperiod: contains a period, e.g. Corp.;

punct: is a punctuation mark, e.g. ?.

feature Hungarian English

best so far 95.91 87.73

+hasdash 95.29 87.36
+hasperiod 95.27 86.96
+punct 95.02 87.26

Table 6.4: Results of adding Boolean-valued surface features concerning
punctuation one by one to the system.

As can be seen from the figures in Table 6.4, defining such punctuation
features decreases the performance of the system. Thus, these features are
not important ones and are removed from both the Hungarian and the
English system.

6.3 Morphological Information

Some simplified morphological information has already been given to the
system by prefix and suffix features, but we have the option of adding
more sophisticated features concerning morphology. Since Hungarian is
a language with a complex morphology, we expect that adding these fea-
tures will improve performance. Some morphological features are also
usually applied for English NER.

Hungarian morphological information (POS tag, lemma, and full anal-
ysis) is provided by ocamorph, an Ocaml reimplementation of hunmorph
[Trón et al., 2005a], based on Hungarian affix and lexicon files of morphdb,
a lexical database and morphological grammar [Trón et al., 2006a].
Ocamorph has a built-in guessing functionality, which indicates the un-
known words as out-of-vocabulary (OOV) and assigns the highest ranked
candidate analysis to them. Selecting the best fitting one of multiple anal-
yses was performed by hundisambig, a statistical morphological disam-
biguator [Halácsy et al., 2005].
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The original CoNLL-2003 dataset contains Penn Treebank POS tags
[Marcus et al., 1993], but does not contain the lemma of tokens. These
were obtained using ocamorph, whose output was mapped to the Penn
tagset. Lemmas were pasted to the original dataset in a new column and
expanded with the ‘OOV’ code if the word was not found in the English
lexicon of morphdb.

Morphological features are as follows:

lemma: the token’s lemma;

fulltag: full morphological analysis;

pos: only the POS tag without information about inflection;

tagend: information about inflection;

oov: out-of-vocabulary word;

tagpattern: pattern of POS tags in a sentence in 5, 7, and 9 word win-
dows;

isbetweensamecases: whether the inspected token’s neighbours have
the same case marking as the token itself;

penntags: an abstraction over Penn tags which groups together similar
tags, e.g. tags starting with VB and MD get the value ‘verb’;

plural: whether the token is in the plural form.

Table 6.5 shows the results of adding morphological features one by
one to the system. Adding the lemma as a feature results in a slightly
higher F-measure on Hungarian data, but none of the other morpholog-
ical features increases the performance before oov. The information that
the word is not included in the morphological analyser’s lexicon seems
important for both languages. This is not surprising, since such lexicons
usually do not contain NEs, except for a few very frequent ones. The
tagpattern and isbetweensamecases features provide information
about the broader neighbourhood of the token, thereby carrying pieces
of information about sentence structure. In the case of tagpattern, we
override the default radius (3 for Hungarian, 2 for English), and the feature
is tested on both broader and narrower windows. The 7 word window (ra-
dius=3) results in the best scores for both languages. Since in English there
is no case marking, the isbetweensamecases feature is applied only to
Hungarian. Similarly, the penntags feature can be interpreted only on

112



the English data, so it is added only to the English system. When recog-
nizing metonymic NEs, the plural feature proved to be very useful (see
Subsection 3.3.2), so it is also applied here.

feature Hungarian English

best so far 95.91 87.73

+lemma 95.99 87.50
+fulltag 95.64 87.43
+pos 95.37 87.02
+tagend 95.02 87.47
+oov 95.99 87.87

+tagpattern
2rad 96.09 87.57
3rad 96.35 87.89
4rad 95.99 87.87

+isbetweensamecases 96.79 -
+penntags - 87.90
+plural 97.14 88.02

Table 6.5: Results of adding morphological features one by one to the sys-
tem.

Instead of the guesser functionality of the morphological analyser, one
can use more sophisticated methods for lemmatization of Hungarian NEs.
For example, Farkas et al. [2008] presents a web-based method for strip-
ping several suffixes of NEs. As can be seen from the results, the mor-
phological features presented here are powerful enough to improve the
F-measure of a NER system. As we expected, adding several morpho-
logical features to the system significantly increases the performance for
Hungarian, and also makes it slightly better for English.

6.4 Syntactic Information

In this section, we deal with features concerning sentence structure. In
the previous section, we have already added some pieces of information
about the neighbourhood of the inspected token to serve as rough syntac-
tic features. However, there are more sophisticated ways of dealing with
syntax.
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Currently, most NE tagged corpora contain chunking information.
Chunks are the output of shallow parsing, which gives an analysis of a
sentence by identifying its constituents. Chunks are black boxes in the
sense that their internal structure is not specified. Moreover, shallow pars-
ing does not provide any information about the syntactic or semantic role
of the chunks in a sentence. Chunk tags are similar to NE tags: they
have start and end positions and also the category the chunk belongs to
(e.g. noun phrase (NP), prepositional phrase (PP)).

The Szeged NER corpus in its original form does not contain syntactic
information; however, since it is a part of the Szeged Treebank, it was pos-
sible to obtain gold chunk tags. Two versions of the mapping were gener-
ated. First, we focused only on baseNPs, which do not contain another NP.
The second version contains complete chunking information on maximal
length NPs (maxNPs) [Bourigault, 1992]. In the CoNLL-2003 dataset, be-
sides maxNPs, other phrases are also labelled. We converted the original
BI labelling format to the BIE1 format which is also used for NE labels
(cf. Subsection 5.3.2).

Since we deal with all kinds of sentence features in this section, features
of sentence start and end position are also applied here. The features are
as follows:

sentstart: if the token is in sentence starting position, it gets the feature
sentstart=1;

sentend: if it is in sentence ending position, it gets the feature
sentend=1;

chunktag: the whole chunk tag, e.g. B-NP;

chunktype: the type of the chunk, e.g. NP;

chunkpart: the part of the tag which is indicating its position in a chunk,
e.g. B;

NpPart: if it is a part of a NP, it gets the feature nppart=1;

parsePatts: pattern of chunk labels in the sentence in 5 and 7 words
windows.

Table 6.6 shows the results. One of the most interesting findings is that
the features indicating sentence start and end position do not improve F-
measure in either Hungarian or English. Since they are generally used for
NER (e.g. Mayfield et al. [2003]; Chieu and Ng [2003]), in a second trial
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they are added together to the system, but this results in an even lower
performance, so these features are removed from both the Hungarian and
the English system.

feature Hungarian baseNP Hungarian maxNP English

best so far 97.14 97.14 88.02

+sentstart 96.53 - 86.41
+sentend 96.79 - 87.98

+sentstart+sentend 96.43 - 87.74

+chunktag 96.87 96.35 87.75
+chunktype 96.09 96.35 88.18
+chunkpart 96.87 95.99 87.23
+getNpPart 96.96 96.43 87.76

+parsePatts
2rad 96.79 96.26 87.45
3rad 96.61 95.62 87.10

Table 6.6: Results of adding syntactic features one by one to the system.

As for the English data, chunktype is the only syntactic feature that
improves performance. This can be due to the fact that NEs are gener-
ally parts of noun phrases, which can be preceded or followed by other
phrases, typically PPs or verbal phrases (VPs). The parsepatt feature,
whose function is to recognize such typical patterns, is proved to be un-
necessary, since every token gets the chunktype features of neighbouring
tokens as well.

The information coded by the chunkpart feature, i.e. recording the
position of the token in a phrase is proved not to be useful, since the
boundaries of NPs and NEs are seldom the same. Here is an example
that illustrates this phenomenon:

token POS lemma chunk NE

to TO to 1-PP O
the DT the B-NP O
European NNP European I-NP B-ORG
Union NNP union E-NP E-ORG

As for Hungarian, neither baseNP nor maxNP features improve F-
measure. The example above also fits for Hungarian NPs, since articles
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are usually not included in NEs. In contrast with the English results, the
chunktype feature does not meet our expectations.

The low performance of syntactic features can be caused by the fact that
our system has already been expanded with a quite large number of fea-
tures coding a wide range of information. Pieces of syntactic information
seem less important for NER than casing features, digit patterns, or mor-
phological information. Therefore, chunking and NER are sometimes per-
formed in reverse order in NLP applications. Identifying language units
as NEs and recognizing their boundaries in the text can help when trying
to find chunks. For example, Osenova and Kolkovska [2002] combines the
two tasks: NER is assumed prior to the stage of NP chunking. Based on
the problem of mismatching boundaries of NPs and NEs, a model which
allows joint analysis could be the real solution (for more details, see Sec-
tion 6.7).

6.5 List Lookup Features

List lookup features are of special importance in NER, as they are used
by almost all systems. List inclusion is a way to express the relation ‘is a’
(e.g. Budapest is a city). The assumption behind using this kind of features
is that if a token is an element of a list of cities, then the probability of this
token to be a city is high.

Several kinds of lists are used for NER. First, using general lists con-
taining common nouns, function words, capitalized nouns or common
abbreviations has proven useful in particular for the disambiguation of
capitalized words in ambiguous position, e.g. in sentence start and end
positions. Mikheev [1999] reports that more than 20% of NEs are ambigu-
ous with common nouns in a corpus built from news of The New York
Times. For similar reasons, Chieu and Ng [2003] use a list of lower case
words that occur inside names (e.g. van der, of ).

Second, lists of entity cues such as typical endings of organization
names, person titles, prefixes and typical location words are also widely
used. Some of them are internal evidence of NEs (cf. Subsection 5.2.2). For
example, knowing that Associates, Inc., and Corp. are frequently used in or-
ganization names could lead to the recognition of Barrington Research As-
sociates Inc. and AMR Corp. [Gaizauskas et al., 1995]. Similarly, person and
location names are often parts of organization names (e.g. Lehman Broth-
ers International, Association for Relations Across the Taiwan Straits), so they
are good indicators of organization names [Wolinski et al., 1995]. Oth-
ers serve as external evidence (cf. Subsection 5.2.3) such as name prefixes

116



(e.g. Mr. Jones) and typical prepositions of location names (e.g. to London)
[Borthwick, 1999].

Third, lists of NEs that belong to a certain NE type are used most fre-
quently. In the rest of this section, the use of this feature type is discussed
more thoroughly.

Most approaches implicitly require candidate words to exactly match
an element of a list. However, one may want to allow some flexibility
in the match conditions. There are several lookup strategies used in NER.
First, words can be lemmatized and only lemmas matched to list elements.
For this purpose, the guesser functionality of a morphological analyser can
also be used, as we do when applying morphological features (cf. Section
6.3). More sophisticated methods can also be applied, as in the case of
our rule-based system (cf. Subsection 5.2.1) and in the case of recognizing
metonymic NEs (cf. Subsection 3.3.2).

Second, words can be fuzzy-matched against the list using some kind
of metric that measures string distance. This allows capturing small lexical
variations in words that are not necessarily inflectional. For example, Tsu-
ruoka and Tsujii [2003] calculate edit distance between spelling variations
of protein names in biomedical texts, while Cohen and Sarawagi [2004]
use the Jaro-Winkler distance metric to correct mismatches.

6.5.1 The Effects of Gazetteer List Size

One might think that NER can be performed by using lists of person, place
and organization names alone, but this is not the case. It is not feasible
to list all names, since new companies are formed all the time, and new
persons are born, receiving new names. In addition, names can occur in
variations: Frederick Flintstone can be mentioned as Frederick, Fred, Freddy,
all of which can also be combined with the last name. These variations
would have to be listed as well.

Even if it was possible to list all names, there would still be the problem
of overlaps between lists, which is caused by the fact that a wide range of
names refer to more than one object in the world (cf. Subsection 2.3.1).
Moreover, complex NEs can include common nouns or function words.
For example, People’s Daily contains a common noun, a possessive marking
and an adverb. If this name is included in a list of organization names,
a feature like isPartOfOrg=1 can be assigned to every mention of its
individual words in a text.

In 1998, Cucchiarelli et al. [1998] reported that one of the bottlenecks
in designing NER systems is the limited availability of large gazetteers,
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particularly for languages other than English. Their system relies on
gazetteers of common proper nouns and a set of heuristic rules, similar to
our rule-based system described in Subsection 5.2.1. As explained in Sub-
section 5.2.4, rule-based systems highly depend on the size of gazetteer
lists.

However, the situation has changed since the 1990s. Currently, most
NER systems use some kind of machine learning algorithm based on prob-
abilities calculated from training data. The fact that we built NER systems
for Hungarian and English with F-measures of 97.14% and 88.02% respec-
tively, using only surface features, digit patterns, and morphological in-
formation, and without the help of external lists, proves that statistical
systems do not rely on gazetteers as much as rule-based systems do. In
addition, large amounts of NEs are currently available via the web. On-
line databases and collaboratively generated resources such as Wikipedia,
DBpedia and Freebase open the door to the extraction of large lists of sev-
eral types of names.

When building an NLP system, finding the balance between precision
and recall is one of the most essential requirements. Some applications
concentrate on precision, while in others, once a minimum of precision is
assured, improvements are dominated by recall issues. Recall is impacted
most heavily by OOV effects, and OOV effects themselves are an almost
direct function of the lists used in the system. Thus, the best way to im-
prove the performance of a system is to expand the lists, so as to address
the leading cause of recall errors. The impact of OOV words on recall can
to some extent be mitigated by synonym-based techniques.

To illustrate the effects of standard mitigation techniques on precision
and recall, we now make a slight detour and briefly describe a method
we used for finding metaphorical expressions by means of different kinds
of lists [Babarczy et al., 2010a,b; Babarczy and Simon, 2012]. For the
automatic identification of metaphors, we searched the corpus for sen-
tences containing one or more words characterising the source domain
and one or more words representing the target domain of a given con-
ceptual metaphor. Three different methods of compiling the word lists
were tested: a) word association experiment, b) dictionary of synonyms,
and c) reference corpus. The first method is based on the assumption that
the expressions people associate with a key word for the source domain
and a key word for the target domain can provide a lexical profile for a
given metaphor type. Word associations were collected in an online ex-
periment. For the second method, the word lists obtained from the associ-
ation experiment were expanded with the synonyms listed for the associ-
ation words in a Hungarian word thesaurus. Compared to the association
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list, the size of the word lists substantially increased (see Table 6.7). For
the third method, word lists for each source and target domain were ex-
tracted from a manually annotated corpus. Based on the three sets of word
lists, the test corpus was automatically annotated producing three files in
which the sentences were marked by tags showing the type of conceptual
metaphor the system identified. Each of the three annotations was then
verified manually.

words ↓ / method→ association synonyms corpus-based

source domain 1239 6348 126
target domain 674 5094 120

Table 6.7: Number of words in lists compiled by the three methods.

Table 6.8 shows the results of the three methods. The most important
findings are that when the association word lists were expanded with syn-
onyms, recall slightly improved, but only at the cost of a decline in preci-
sion. The corpus-based method, where the appropriate candidates were
accurately extracted by hand, was clearly the most successful of the three
strategies. (The values are very low, which indicates that our initial hy-
pothesis – that the co-occurrence of psycholinguistically typical source
domain and target domain words in a sentence is a good predictor of
metaphoricity – receives no empirical support.)

method recall (%) precision (%) F-measure (%)

association 3.8 7.5 5.6
synonyms 18.1 4.5 11.3
corpus-based 31.3 55.4 43.3

Table 6.8: Results of the three methods.

Turning back to the NER task: for proper names, similar synonym-
based mitigation techniques break down. Based on the results presented
above, we can hypothesize that expanding the gazetteer lists will result
in higher recall at the cost of a decline in precision, and that shorter, but
accurately selected lists will improve both precision and recall. Related
works on the effects of gazetteer list size in NER also confirm our hy-
pothesis. Morgan et al. [1995], participants of the MUC-6 competition,
report that gazetteers provided by the organizers were not used in their
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system due to their limited effect on performance. Krupka and Haus-
man [1998] present lexicon size experiments, where the basic gazetteers
contain 110,000 names, which were reduced to 25,000 and 9,000 names,
while system performance did not degrade much (from 91.60% to 91.45%
and 89.13%, respectively). Moreover, they also show that the addition of
an extra 42 entries to the gazetteers improves performance dramatically
on MUC-7 datasets. Based on these previous experiments, Mikheev et al.
[1999] ask the questions: how important are gazetteers? is their size im-
portant? if gazetteers are important but their size is not, then what are
the criteria for building gazetteers? They hypothesize and confirm empir-
ically that using relatively small gazetteers of well-known names, rather
than large gazetteers of low-frequency names, is sufficient. Indeed, while
best results do come from the run with full gazetteers, the run with limited
gazetteers decreases precision and recall only with 1–4 percents.

6.5.2 Experiments

To get answers to Mikheevs’ questions, we carried out several experiments
on gazetteer list size for both languages. We built lists of different sizes
of every type of names from different sources. In contrast to the feature
adding steps so far, each list was added separately to the system, thus the
longer lists do not contain the shorter ones and their effect was measured
separately. Since we are interested in the effects of list expansion on preci-
sion and recall, here we also provide these figures.

We only include features which are activated when the token is in the
dictionary. This model is roughly equivalent to a model containing fea-
tures indicating that a token is not in the dictionary [Borthwick, 1999]. All
experiments were run with the same overall parameters as the previous
ones, using the feature combination that proved to be the best so far.

Following the standard method, we first used lists extracted from the
corresponding training sets, hoping to tune the system to the kinds of NEs
that occur in the particular genre of text (here, newswire). Since train-
ing corpora are restricted in size, these gazetteers do not contain many
names. In the next experiments, we used longer and longer lists aggre-
gated mostly from the web. For both languages, we also used lists ex-
tracted from our Wikipedia corpora (cf. Section 4.3). Finally, we manually
created small and accurately selected name lists, and measured the sys-
tem’s performance with these limited gazetteers.

To compile lists for English, we downloaded several kinds of NEs from
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the CIA Factbook1: names of countries, capitals, cities; languages, nation-
alities, religions; parties; and party persons, resulting in gazetteers that
contain ca. 10,000 names altogether.

For English names, we used Freebase2, which is an open repository of
structured data of almost 23 million entities at the time of writing. Data in
Freebase comes from a variety of data sources. Some of them are automat-
ically loaded from a wide range of websites, others are manually added
by the Freebase community. We used this large data repository as a list of
entities, extracting several types of NEs from amusement park areas to TV
characters, and mapping them to CoNLL name categories. Our Freebase
lists contain more than 6 million names altogether.

To answer the question of whether gazetteer size is important or not,
we compiled lists of three different sizes: from the CIA Factbook, from the
English Wikipedia, and from Freebase. In the next step, we seek answers
to the question of what the criteria are for building gazetteers. If one wants
to base gazetteer building on linguistic criteria, frequency data should be
used. For this reason, all three lists described above were merged for each
NE type, then occurrences of each name were counted. First, we used
only names whose frequency is above 100. Afterwards, the first n names,
i.e. the n most frequent names were included in the dictionaries, where n
is set to higher and higher values (100, 1,000, 10,000, 100,000).

In the last experiment, we applied an extra-linguistic criterion: as
Mikheev et al. [1999] assert, using well-known names are useful for NER.
Since the corpora include mostly business newswire, we selected the
richest cities and the countries and continents they are located in from
Wikipedia, the world’s biggest companies according to the Fortune 500
Global list, the richest men in the world who are on the Forbes list of bil-
lionares, and the most widely used languages according to the Ethnologue
database. These lists contain altogether 903 names, and in contrast to the
large lists above, they were cleaned manually. These lists are intended to
be small, but accurately compiled gazetteers, which we suppose will im-
prove precision.

Table 6.9 shows results of gazetteer list size experiments on the English
data. It can be clearly seen that running the system with different size
gazetteers does not change the performance substantially. Precision and
recall values are balanced, and F-measures vary in a 1–2% range. The only
exception is the case when we used lists extracted from the CoNLL train-
ing data. Applying them causes an effect which is exactly the inverse of

1https://www.cia.gov/library/publications/the-world-factbook/
2http://www.freebase.com/
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lists entries(#) precision(%) recall(%) F-measure(%)

best so far 0 88.57 87.80 88.18

CoNLL train lists 8,214 93.68 78.86 85.64
CIA Factbook 9,885 89.63 88.14 88.88
enwiki 71,011 89.59 88.61 89.09
Freebase 6,339,915 89.21 87.83 88.52

freq > 100 310 88.10 87.21 87.65
n=100 400 88.14 87.31 87.72
n=1,000 4,000 88.34 87.70 88.02
n=10,000 40,000 89.35 88.22 88.78
n=100,000 400,000 89.88 88.37 89.12

by hand 903 88.57 88.05 88.31

Table 6.9: Results of gazetteer size experiments on the English dataset.

what we expected: precision increases by 5%, while recall decreases by
9%. Some of the CoNLL-2003 participants (e.g. Carreras et al. [2003]) re-
port that these gazetteers did not help the recognition of NEs, and were
therefore not used. Klein et al. [2003] suggests an explanation: since these
lists are built from the training data, they do not increase coverage, and
provide only a flat distribution of name phrases whose empirical distribu-
tions are spiked.

As the results clearly show, building larger and larger lists does not im-
prove the performance significantly. Using manually compiled short lists
results in a similar F-measure as using large Freebase lists, the difference is
only 0.21%. Small, but accurately selected gazetteers were supposed to im-
prove precision, but it is left unchanged, while recall somewhat increases.
Compiling gazetteers based on frequency appears to be a useful method,
and F-measure increases with the number of names taken into account.
Indeed, frequency-based lists with the highest n give the best result.

We used similar methods for compiling Hungarian lists, with slight dif-
ferences. We also built gazetteers from the training set of the Szeged NER
corpus, and also extracted names from the Hungarian Wikipedia corpus.
Since a Freebase-like repository does not exist for Hungarian, we had to
collect names from several sources on the web. We aggregated lists of
names of Hungarian towns, streets and other locations from official web-
sites of the post and other offices. We also built a list of common suffixes
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that typically occur after place names (e.g. utca (‘street’), állomás (‘station’)).
For the MISC category, we compiled a list of Hungarian awards. For or-
ganizations, we used the list of the names of all Hungarian companies
provided by the Hungarian Justice Department. The exhaustive list of all
official Hungarian given names was also used, as well as several name
prefixes and common nouns marking rank. For all NE types, we also used
the gazetteers compiled for the original hunner system (cf. Subsection
5.3.2). Putting all of them together, we obtained lists containing more than
900,000 Hungarian names altogether.

Name occurrences were counted to obtain frequency-based lists for
Hungarian. The method was similar to that applied for English, but re-
sulted in lists where the frequency of the first elements was equal to the
number of lists collected from different sources, so the frequency was not
a useful criterion in the case of Hungarian gazetteers. For this reason, we
did not conduct experiments with the Hungarian data using larger and
larger gazetteers based on frequency counts.

We now had three lists of different sizes, extracted from the Szeged
NER training corpus, the Hungarian Wikipedia corpus, and the web, re-
spectively. Similarly to the English experiments, we also compiled small
lists by hand, which contain the Hungarian names of countries and their
capitals, business newpapers, stock market indexes, Hungary’s 20 biggest
companies, and the most frequent Hungarian first and last names. These
lists include 702 names altogether, and were cleaned manually.

lists entries(#) precision(%) recall(%) F-measure(%)

best so far 0 97.84 96.45 97.14

Szeged train lists 13,579 97.87 97.87 97.87
huwiki 68,212 96.77 95.74 96.26
web lists 907,396 96.96 96.10 96.53
by hand 702 96.95 95.92 96.43

Table 6.10: Results of gazetteer size experiments on the Hungarian dataset.

As the results of experiments on the Hungarian dataset show (see Table
6.10), applying lists of different sizes causes system performance to vary
in a small range. Using gazetteers extracted from training data causes
more than 1% improvement in recall and only a non-significant increase
in precision, resulting in the best F-measure. These results clearly show
that applying larger and larger dictionaries collected from several sources
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does not significantly improve the system’s performance.
We compared the performance of a maximum entropy NER system un-

der various entity list size conditions, ranging from a couple of hundred
to several million entries, and conclude that entity list size has only mod-
erate impact on statistical NER systems. If large entity lists are available,
we can use them, but their lack does not cause invincible difficulties in the
development of NER systems [Kornai and Thompson, 2005].

6.6 Evaluation

After measuring the power of features on development datasets, we have
to check our findings on the test set. For this reason, we first ran our sys-
tem on the corresponding test sets with the feature combination being the
best so far. After that, we measured the effect of each major feature cat-
egory by removing them one by one. We always removed one feature
category, while others remained the same.

features Hungarian English

best on devel 97.87 89.12
on test 95.41 84.90

-lex 94.77 82.49
-syn 95.41 85.22
-morph 95.08 84.34
-digit 95.29 84.79
-casing 96.10 84.90
-string 95.37 72.31

Table 6.11: Results of several feature combinations on test datasets.

Table 6.11 shows the results of several feature combinations evaluated
on the test datasets. For both languages, it is true that the evaluation on the
corresponding test set results in a 3–4% decline in F-measure, compared
to the figures achieved on the development set. This is due to the fact that
the genre of texts in the datasets are slightly different: the CoNLL test set
contains more sports-related news, and the Szeged NER corpus test set
does not contain as much stock market news as the development set.

Most of our expectations based on results of feature engineering on the
development set are confirmed. Not using lexicon features does not cause
significant change in the overall F-measure. Removing syntactic features
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from the English system results in a higher performance, which validates
our statement that chunking information is not necessary for NER. (Syn-
tactic features were not added to the Hungarian system, so performance
remains the same.) Similarly to the results of the original hunner sys-
tem (cf. Subsection 5.3.2), morphological features do not have significant
effect, neither do digit patterns. It is interesting that removing the Boolean-
valued features providing casing information improves the performance
in the case of Hungarian, and does not decrease it in English. Quite sur-
prisingly, removing the string-valued features, which caused the largest
decline in the original hunner system, has significantly less effect on the
Hungarian system, while the English system breaks down without these
features.

Comparing these results to those obtained using the external knowl-
edge of Wikipedia (95.48% for Hungarian, and 86.34% for English; see
Subsection 4.3.4 for details), we can conclude that using such external re-
sources and a smaller number of features may improve the performance
of a NE tagger.

6.7 Conclusion

Having experimented with most of the features generally used in NER,
we can conclude that for a supervised NER system, some of the most sim-
ple features, the string-valued features related to the character makeup
of words are the strongest. Quite counterintuitively, features indicating
casing information and sentence starting position do not improve the per-
formance. Features based on external language processing tools such as
morphological analysers and chunkers are not necessary for finding NEs
in texts.

As for the effects of gazetteer list size, we can conclude that in a statisti-
cal NER system, gazetteers are not as important as in rule-based systems.
Adding larger and larger lists to the system does not improve the overall
F-measure significantly. When such lists are available, there is no reason
not to use them, and applying frequency data for creating better dictio-
naries can be useful, but these techniques are not essential for building a
state-of-the-art NER system.

In this chapter, we applied most features traditionally used in NER.
However, it is not an exhaustive study, as there are other features which
were not included in our system. For example, several semantic features
are also widely used, requiring external resources such as WordNet and
Levin’s verb classes (cf. Subsection 3.3.2). Using Wikipedia, DBpedia and
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other community generated sources of external knowledge for improving
the performance of NER systems is also an emerging field (cf. Subsection
4.3.1). Another way of improving the performance of a NE tagger is us-
ing the tags emitted by other NER systems as features, as we did for the
evaluation of our Wikipedia corpora (cf. Subsection 4.3.4).

As mentioned previously (cf. Subsection 5.2.1 and Section 6.4), NER
and other tasks realizing language processing on several linguistic levels
are interfering. This raises the question of what kind of language process-
ing model to develop.

From the cognitive point of view, this question can be transformed to
that of how modular the language system is. A module is a set of pro-
cesses: it converts an input to an output, and is a black box to other
modules, since the processes inside are independent of processes outside.
Models in which language processing occurs in this way are called au-
tonomous. The opposing view is that processing is interactive. Interaction
involves the influence of processing levels on each other, which raises two
more questions. First, are the processing stages discrete or do they over-
lap? In a discrete model, a level of processing can only begin when the
previous one has finished. In a cascade model [McClelland, 1979], infor-
mation is allowed to flow from one level to the following even before the
first process is completed. If the stages overlap, then multiple candidates
may become activated at the lower level of processing. The second ques-
tion of interaction is whether there is a reverse flow of information from a
level to a previous one [Harley, 2001].

From the point of view of NER, our system presented here can be
viewed as an interactive model in the sense that pieces of surface, mor-
phological, and syntactic information are all provided to the system, and
these interfere and compete to solve the task of identifying NEs in the text.
For computational reasons, POS tagging, chunking, and NER are defined
as discrete processing stages, but actually our NE tagger does not function
as a modular system. Moreover, it can be used as a cascade model by the
assembly of POS tagging, NP chunking, and NE tagging subsystems.
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Chapter 7

Conclusions and Future
Directions

The first question the NER task raises is what kind of linguistic units are
to be considered NEs. In Chapter 2, we gave an overview of the definition
of proper names from the point of view of philosophy and linguistics. We
concluded that it is still a challenging question, but there are a few state-
ments which can be used as pillars of defining what to annotate as NEs.
If we insist tagging proper names only, we have to restrict the domain of
taggables to linguistic units which have unique reference in all possible
worlds, thus being rigid designators; which are arbitrary linguistic units
whose only semantic implication is the fact of naming; and which are in-
divisible and non-compositional.

These requirements can serve as the foundation for the definition of
every kind of NE, but they must be loosened to allow tagging other im-
portant groups of linguistic structures such as relative time expressions.
Moreover, there are a quite large number of linguistic units which are dif-
ficult to categorize and vary across languages, such as names of nationali-
tites, languages, days, or brands.

Therefore, a universal definition of NEs that can be applied to all types
and languages cannot be given based on the classic Aristotelian view on
classification, which states that there must be a differentia specifica which
allows something to be the member of a group, and excludes others. For
the purposes of NER, the prototype theory is more plausible. According
to this approach, linguistic units can be seen as elements of a range from
the most prototypical to non-prototypical categories. Psycholinguistic ex-
periments (e.g. Kobeleva [2008]) and corpus-based studies (e.g. Tse [2005])
also confirm that person names constitute the core of proper names. Lo-
cation names occupy an intermediate position, while names of events and
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artefacts are considered the least prototypical, i.e. peripheral members of
proper names. It is an interesting supplementary observation that the
most prototypical names, i.e. person names have been studied from the
very beginning of linguistics, and they have been postulated as proper
names in the first systematic grammars.

According to this approach, one of the elementary steps of building a
NE tagged corpus is creating a continuum of NEs ranging from prototyp-
ical to non-prototypical categories, which is an interesting future research
direction in Hungarian NER. Finally, the goal of the NER application will
restrict the range of linguistic units to be taken into account.

NEs are ambiguous referential elements of discourse, since they are
likely to occur in metonymies. Metonymy is a reference shift: we use a
name not to refer to its primary reference, but to a related one, i.e. a con-
textual reference. In linguistics, metonymy is often postulated as sense
extension, but because of the meaninglessness of the proper names (cf.
Subsection 2.3.2), using the term ‘reference shift’ is much more suitable.

Since the conceptual mapping between primary and contextual ref-
erence is not linked to particular linguistic forms, metonymy is known
to pose a difficult task for both human annotators and NLP applica-
tions. However, using some surface and syntactic information, and ap-
plying several semantic generalization methods lead to improvement in
resolving metonymies, which is also suggested by the fact that these fea-
tures are used by several independent research teams (e.g. Nastase and
Strube [2009]; Ferraro [2011]; Judea et al. [2012]). We presented a super-
vised system, which achieved the best overall results in the SemEval-2007
metonymy resolution task (cf. Chapter 3). Based on the results of our
system, we concluded that the main borderline does not lie between con-
ventional and unconventional metonymies, but rather between literal and
metonymic usage.

Recognizing metonymic NEs is of key importance in several NLP tasks,
such as MT, IR, or anaphora resolution. For this reason, an annotation ap-
proach is required that offers the possibility of handling metonimicity at
higher processing levels, while providing interoperability between vari-
ous annotation schemes. This can be achieved by applying the combi-
nation of the Tag for Meaning and Tag for Tagging rules, i.e. annotating
metonymic NEs with tags which provide information about the primary
reference as well as the contextual reference. Such a combination has been
applied in case of the HunNer and the Criminal NE corpora. The latter can
serve as a training corpus for applying the GYDER system for Hungarian,
which is an interesting future direction.

Machine learning algorithms typically learn their parameters from cor-
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pora, and systems are evaluated by comparing their output to another part
of the corpus, or to another corpus. The corpora which are manually an-
notated with linguistic information following the rules of some annota-
tion guidelines are gold standard corpora. However, gold standard cor-
pora in the field of NER are highly domain-specific, use different tagsets,
and are restricted in size. Manually annotating large amounts of text is
a time-consuming, highly skilled, and delicate job, but large, accurately
annotated corpora are essential for building robust supervised machine
learning NER systems. Therefore, reducing the annotation cost is a key
challenge.

An approach to this issue is to generate resources automatically, which
can be done by various means, e.g. by applying NLP tools that are accu-
rate enough to allow automatic annotation, or merging existing gold stan-
dard datasets. In the latter case, researchers are faced with the problem
of having to combine various tagsets and annotation schemes. Another
approach is to use collaborative annotation or collaboratively constructed
resources, such as Wikipedia or DBpedia. In Section 4.3, we presented
a method which combines these approaches by automatically generating
NE tagged corpora from Wikipedia.

Automatically generated or silver standard corpora provide an alter-
native solution which is intended to serve as an approximation of gold
standard corpora. Such corpora are highly useful for improving the per-
formance of NER systems in several ways, as shown in Subsection 4.3.4:
(a) for less resourced languages, they can serve as training corpora in lieu
of gold standard datasets; (b) they can serve as supplementary or inde-
pendent training sets for domains differing from newswire; (c) they can
be the source of large entity lists, and (d) feature extraction.

Besides reducing the annotation cost of corpus building, several cur-
rent trends concerning the NER task emerge from our overview (Chap-
ter 4). Researchers attempting to evaluate their systems across different
domains are faced with the fact that cross-domain evaluation results in
low F-measure. Thus, current efforts are directed to achieve robust perfor-
mance across domains, which still remains a problem and needs further
investigation.

Another trend in NER research is scaling up to fine-grained entity
types. Classic gold standard datasets use coarse-grained NE hierarchies,
taking into account only the three main classes of names (PER, ORG,
LOC) and certain other types depending on the applied annotation scheme.
Fine-grained NE hierarchies also exist (e.g. Sekine’s extended hierarchy
[Sekine et al., 2002] or the tagset applied in the BBN corpus [Weischedel
and Brunstein, 2005]), but when used for evaluation, they have to be
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mapped to the classic coarse-grained typology, which is far from trivial.
As shown in Section 4.3, using continuously growing, collaboratively con-
structed resources creates the possibility of building corpora with even
more fine-grained NE hierarchies, which can also provide interoperability
between various tagsets.

The NER task, similarly to other NLP tasks, can be approached in
two main ways: by applying hand-crafted rules, or by statistical machine
learning techniques, called rationalist and empiricist methodologies based
on their roots in philosophy. Since the 1950s and the 1990s, mainly ratio-
nalist methods have been applied in NLP, but empirical methods returned
in the 1990s, and have since become the most widely applied techniques.

The rationalist methodology has several shortcomings. Manually de-
veloping a rule-based system and handling a large number of rules is quite
difficult, requiring a great deal of domain-specific knowledge engineering.
In addition, these systems are brittle and not portable between different
domains or tasks. Empirical methods, on the other hand, offer potential
solutions to several problems in NLP, e.g. knowledge acquisition by means
of automatic learning techniques, coverage by means of large amounts of
data, robustness by means of frequency-based algorithms, and extensibil-
ity by means of portable systems.

Despite the fact that gold standard corpora used for training and test-
ing are usually cleaned, empirical methods still offer more robustness than
rule-based systems do, in that they can be ported to new datasets or new
domains at the expense of some performance loss, but without the need to
rewrite the whole system. Although robustness and extensibility are still
not properly solved, as illustrated in Section 4.1 and in Subsection 4.2.2, re-
spectively, using empirical methods clearly results in higher performance.

As the strengths and weaknesses of statistical and rule-based systems
tend to be complementary, current research attempts to deal with hy-
brid solutions that combine the two methodologies. However, these ap-
proaches have so far been less successful in industrial applications than in
the research lab.

The current dominant technique used in the field of NER is supervised
learning. Its disadvantage is that it requires large amounts of previously
annotated data (cf. Chapter 4 and 5), so one might say that the human
labour of creating rules has only been shifted to that of building corpora.
However, there is a quite new, emerging field of NLP and of NER in partic-
ular, which involves using unsupervised or semi-supervised techniques.
In these cases, human labour has also been shifted to constructing seed ex-
amples and/or embedding heuristics in the system. Unsupervised learn-
ing is a field where significant improvements can be made in the future.
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Another interesting future direction is developing cascade models of
several NLP tasks overlapping and allowing information flow between
stages. Such attempts were made by Móra and Vincze [2012] at joint POS
tagging and NER, and by Finkel and Manning [2009] at joint parsing and
NER. However, this approach is still in its infancy and needs further in-
vestigation.

Defining features, which are descriptors or characteristic attributes of
datapoints in the text, is a manual undertaking, similar to coding pat-
terns for a rule-based system. However, in the case of statistical methods,
the linguist does not furnish information about the power of the feature,
which has to be measured on real data before inclusion into the system.
To measure the strength of features, we used our maximum entropy NER
system (see Subsection 5.3.2), and made several experiments with adding
new features to it one by one.

After trying out most features generally used in NER, we concluded
that for a supervised NER system, the most simple features, i.e. the string-
valued features related to the character makeup of words are the strongest
ones. Quite counterintuitively, features indicating casing information and
sentence starting position do not improve performance. Features based
on external language processing tools such as morphological analysers
and chunkers do not seem necessary for finding NEs in texts. Therefore,
our system does not serve as a modularized language processing model
(cf. Section 6.7).
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S., Pennacchiotti, M., Romano, L., and Szpakowicz, S. (2010). SemEval-
2010 Task 8: Multi-Way Classification of Semantic Relations between
Pairs of Nominals. In Proceedings of the 5th International Workshop on Se-
mantic Evaluation, pages 33–38, Uppsala, Sweden. Association for Com-
putational Linguistics.

Hobbs, J. R., Stickel, M. E., Appelt, D. E., and Martin, P. (1993). Interpreta-
tion as Abduction. Artificial Intelligence, 63(1-2):69–142.

Huddleston, R. and Pullum, G. (2002). The Cambridge Grammar of the En-
glish Language. Cambridge University Press, New York.

Hunston, S. (2008). Collection strategies and design decisions. In Lüdel-
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Simon, E., Farkas, R., Halácsy, P., Sass, B., Szarvas, Gy., and Varga, D.
(2006). A HunNER korpusz. In Alexin, Z. and Csendes, D., editors, IV.
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