#### Neurobiology

Introduction to neurosciences for Cognitive MSs.

#### Homeostasis

- Concept whereby body states are regulated toward a steady state
  - Proposed by Walter Cannon in 1932
- At the same time Cannon introduced negative feedback regulation
  - an important part of this feedback regulation is mediated by the ANS through the hypothalamus

## Autonomic Nervous System

- Controls visceral functions
- functions to maintain a dynamic internal environment, necessary for proper function of cells, tissues, organs, under a wide variety of conditions & demands

### Autonomic Nervous System

- Visceral & largely involuntary motor system
- Three major divisions
  - Sympathetic
    - Fight & flight & fright
    - emergency situations where there is a sudden  $\Delta$  in internal or external environment
  - Parasympathetic
    - Rest and Digest
  - Enteric
    - neuronal network in the walls of GI tract

#### Divisions of the Autonomic Nervous System

- Sympathetic "fight, flight, or fright"
  - Activated during exercise, excitement, and emergencies
- Parasympathetic "rest and digest"
  - Concerned with conserving energy

# Anatomical Differences in Sympathetic

- Issue from different regions of the CNS
  - Sympathetic also called the thoracolumbar division
  - Parasympathetic also called the craniosacral division

Copyright © 2005 Pearson Education, Inc., publishing as Benjamin Cummings



# ANS

#### Primarily an effector system

- Controls
  - smooth muscle
  - heart muscle
  - exocrine glands
- Two neuron system
  - Preganglionic fiber
    - cell body in CNS
  - Postganglionic fiber
    - cell body outside CNS



#### Neurotransmitters of Autonomic Nervous System

- Neurotransmitter released by preganglionic axons
  - Acetylcholine for both branches (cholinergic)

#### Sympathetic Nervous System

- Pre-ganglionic cells
  - intermediolateral horn cells
  - C8 to L2 or L3
  - release primarily acetylcholine (nicotin)
  - also releases some neuropeptides (eg. LHRH)
- Post-ganglionic cells
  - Paravertebral or Prevertebral ganglia
  - most fibers release norepinephrine
  - also can release neuropeptides (eg. NPY)

# Anatomical Differences in Sympathetic and Parasympathetic Divisions



#### (a) Sympathetic pathway

Sympathetic – long postganglionic fibers Sympathetic axons – highly branched Influences many organs Sympathetic postganglionic axons – most release norepinephrine (adrenergic)

Copyright © 2005 Pearson Education, Inc., publishing

# Mass SNS discharge

- Increase in arterial pressure
- decreased blood flow to inactive organs/tissues
- increase rate of cellular metabolism
- increased blood glucose metabolism
- increased glycolysis in liver & muscle
- increased muscle strength
- increased mental activity
- increased rate of blood coagulation

# Normal Sympathetic Tone

- 1/2 to 2 Impulses/Sec
- Creates enough constriction in blood vessels to limit flow
- Most SNS terminals release norepinephrine
  - release of norepinephrine depends on functional terminals which depend on nerve growth factor

#### Adrenal gland is exception

On top of kidneys

Adrenal medulla (inside part) is a major organ of the sympathetic nervous system



# Adrenal gland is exception

- Synapse in gland
- Can cause body-wide release of epinephrine aka adrenaline and norepinephrine in an extreme emergency (adrenaline "rush" or surge)



### Parasympathetic Nervous System

#### Preganglionic neurons

- Iocated in several cranial nerve nucle/ in brainstem
  - Edinger-Westphal nucleus (III)
  - superior salivatory nucleus (VII)
  - inferior salivatory nucleus (IX)
  - dorsal motor (X) (secretomotor)
  - nucleus ambiguus (X) (visceromotor)
- intermediolateral regions of S2/3,4
- release acetylcholine (nicotin)

### Parasympathetic Nervous System

#### Postganglionic cells

- cranial ganglia
  - ciliary ganglion
  - pterygopalatine
  - submandibular ganglia
  - otic ganglia
- other ganglia located near or in the walls of visceral organs in thoracic, abdominal, & pelvic cavities
- release acetylcholine (muszkarin)

# Anatomical Differences in Sympathetic and Parasympathetic Divisions



#### (b) Parasympathetic pathway

Parasympathetic – short postganglionic fibers Parasympathetic axons – few branches Localized effect Parasympathetic postganglionic axons – release acetylcholine

Copyright © 2005 Pearson Education, Inc., publishing

#### Parasympathetic nervous system

- The vagus nerves innervate the heart, lungs, bronchi, liver, pancreas, & all the GI tract from the esophagus to the splenic flexure of the colon
- The remainder of the colon & rectum, urinary bladder, reproductive organs are innervated by sacral preganglionic nerves via pelvic nerves to postganglionic neurons in pelvic ganglia

# Effects of Stimulation

- Eye: S dilates pupils P- constricts pupil, contracts ciliary muscle & increases lens strength
- Glands :in general stimulated by P but S + will concentrate secretion by decreasing blood flow. Sweat glands are exclusively innervated by <u>cholinergic</u> S
- GI tract: S -, P + (mediated by enteric)
- Heart: S +, P -
- Blood vessels: S constriction, P largely absent

### Effects of Stimulation

- Airway smooth muscle: S dilation P constriction
- Ducts: S dilation P constriction
- Immune System: S inhibits, P ??

#### Vegetativ neurotranszmitterek

| Transzmitter   | Receptor       | Agonista    | Antagonista    | Előfordulás          |
|----------------|----------------|-------------|----------------|----------------------|
| ACh            | nAChR          | ACh         | hexamethonium  | vegetativ ganglionok |
|                |                | nikotin     | dekamethonium  |                      |
|                | mAChR          | ACh         | atropin        | pasy effektorok      |
|                |                | muszkarin   |                | egyes sy effektorok  |
|                |                |             |                | (pl. verejték-       |
|                |                |             |                | mirigyek)            |
| Katekol-       | $\alpha_1$     | NA≥A>>I     | fenoxibenzamin | sy effektorok        |
| aminok         |                | fenilefrin  | prazosin       | (rezisztenciaerek)   |
| (adrenalin,    |                | clonidin    |                |                      |
| noradrenalin,  | $\alpha_2$     | NA≥A>>I     | fenoxibenzamin | preszinaptikus       |
| izoproterenol) |                | fenilefrin  |                | feedback             |
|                |                |             |                | sy effektorok        |
|                |                |             |                | (vénák - ?)          |
|                | $\beta_1$      | I>A≥NA      | propranolol    | sy effektorok (szív) |
|                | β <sub>2</sub> | I>A>>NA     | propranolol    | sy effektorok        |
|                |                | isoprenalin |                | (bronchusok,         |
|                |                |             |                | vázizomzat artériái) |

| Table 16.3         Effects of the Sympathetic and Parasympathetic Divisions on Various Tissues |         |                                                                        |                                               |
|------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------|-----------------------------------------------|
| Organ                                                                                          |         | Sympathetic Effects and<br>Receptor Type*                              | Parasympathetic Effects and<br>Receptor Type* |
| Adipose tissue                                                                                 |         | Fat breakdown and release of fatty acids ( $\alpha_2$ , $\beta_1$ )    | None                                          |
| Arrector pili muscle                                                                           |         | Contraction ( $\alpha_1$ )                                             | None                                          |
| Blood (platelets)                                                                              |         | Increases coagulation ( $\alpha_2$ )                                   | None                                          |
| Blood vessels                                                                                  |         |                                                                        |                                               |
| Arterioles (carry l<br>to tissues)                                                             | blood   |                                                                        |                                               |
| Digestive orga                                                                                 | ans     | Constriction ( $\alpha_1$ )                                            | None                                          |
| Heart                                                                                          |         | Dilation ( $\beta_2$ ), constriction ( $\alpha_1$ ) <sup>†</sup>       | None                                          |
| Kidneys                                                                                        |         | Constriction ( $\alpha_1, \alpha_2$ ); dilation ( $\beta_1, \beta_2$ ) | None                                          |
| Lungs                                                                                          |         | Dilation ( $\beta_2$ ), constriction ( $\alpha_1$ )                    | None                                          |
| Skeletal muse                                                                                  | cle     | Dilation ( $\beta_2$ ), constriction ( $\alpha_1$ )                    | None                                          |
| Skin                                                                                           |         | Constriction ( $\alpha_1, \alpha_2$ )                                  | None                                          |
| Veins (carry bloo<br>away from tissue                                                          | d<br>s) | Constriction ( $\alpha_1$ , $\alpha_2$ ), dilation ( $\beta_2$ )       |                                               |
| Eye                                                                                            |         |                                                                        |                                               |
| Ciliary muscle                                                                                 |         | Relaxation for far vision ( $\beta_2$ )                                | Contraction for near vision (m)               |
| Pupil                                                                                          |         | Dilated $(\alpha_1)^{\ddagger}$                                        | Constricted (m) <sup>‡</sup>                  |
| Gallbladder R                                                                                  |         | Relaxation ( $\beta_2$ )                                               | Contraction (m)                               |
| Glands                                                                                         |         |                                                                        |                                               |
| Adrenal                                                                                        |         | Release of epinephrine and norepinephrine (n)                          | None                                          |
| Gastric                                                                                        |         | Decreases gastric secretion ( $\alpha_2$ )                             | Increases gastric secretion (m)               |
| Lacrimal                                                                                       |         | Slight tear production ( $\alpha$ )                                    | Increases tear secretion (m)                  |
| Pancreas                                                                                       |         | Decreases insulin secretion ( $\alpha_2$ )                             | Increases insulin secretion (m)               |
|                                                                                                |         | Decreases exocrine secretion ( $\alpha$ )                              | Increases exocrine secretion (m)              |

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

| Table 16.3         Effects of the Sympathetic and Parasympathetic Divisions on Various Tissues |                                                                                               |                                                        |  |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| Organ                                                                                          | Sympathetic Effects and<br>Receptor Type*                                                     | Parasympathetic Effects and<br>Receptor Type*          |  |
| Salivary                                                                                       | Constriction of blood vessels and slight production of a thick, viscous saliva ( $\alpha_1$ ) | Dilation of blood vessels and thin, copious saliva (m) |  |
| Sweat                                                                                          |                                                                                               |                                                        |  |
| Apocrine                                                                                       | Thick, organic secretion (m)                                                                  | None                                                   |  |
| Merocrine                                                                                      | Watery sweat from most of the skin (m); sweat from the palms and soles ( $\alpha_1$ )         | None                                                   |  |
| Heart                                                                                          | Increases rate and force of contraction ( $\beta_1$ , $\beta_2$ )                             | Decreases rate of contraction (m)                      |  |
| Liver                                                                                          | Glucose released into blood ( $\alpha_1$ , $\beta_2$ )                                        | None                                                   |  |
| Lungs                                                                                          | Dilates air passageways ( $\beta_2$ )                                                         | Constricts air passageways (m)                         |  |
| Metabolism                                                                                     | Increases up to 100% ( $\alpha$ , $\beta$ )                                                   | None                                                   |  |
| Sex organs                                                                                     | Ejaculation ( $\alpha_1$ ), erection <sup>§</sup>                                             | Erection (m)                                           |  |
| Skeletal muscles                                                                               | Breakdown of glycogen to glucose ( $\beta_2$ )                                                | None                                                   |  |
| Stomach and intestines                                                                         |                                                                                               |                                                        |  |
| Wall                                                                                           | Decreases tone ( $\alpha_1$ , $\alpha_2$ , $\beta_2$ )                                        | Increases motility (m)                                 |  |
| Sphincter                                                                                      | Increases tone $(\alpha_1)$                                                                   | Decreases tone (m)                                     |  |
| Urinary bladder                                                                                |                                                                                               |                                                        |  |
| Wall (detrusor)                                                                                | None                                                                                          | Contraction (m)                                        |  |
| Neck of bladder Contraction $(\alpha_1)$                                                       |                                                                                               | Relaxation (m)                                         |  |
| Internal urinary sphincter                                                                     | Contraction ( $\alpha_1$ )                                                                    | Relaxation (m)                                         |  |

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

\*When known, receptor subtypes are indicated. The receptors are  $\alpha_1$ - and  $\alpha_2$ -adrenergic,  $\beta_1$ - and  $\beta_2$ -adrenergic, nicotinic cholinergic (n), and muscarinic cholinergic (m). \*Normally blood flow increases through coronary arteries because of increased demand by cardiac tissue for oxygen (local control of blood flow is discussed in chapter 21). In experiments that isolate the coronary arteries, sympathetic nerve stimulation, acting through  $\alpha$ -adrenergic receptors, causes vasoconstriction. The  $\beta$ -adrenergic receptors are relatively insensitive to sympathetic nerve stimulation but can be activated by epinephrine released from the adrenal gland and by drugs. As a result, coronary arteries vasodilate. \*Contraction of the radial muscles of the iris causes the pupil to dilate. Contraction of the circular muscles causes the pupil to constrict (see chapter 15). \*Decreased stimulation of alpha receptors by the sympathetic division can cause vasodilation of penile blood vessels, resulting in an erection.

| Szerv, szervrendszer | Paraszimpatikus ingerlés                            | Szimpatikus ingerlés                                     | Adrenerg<br>receptor |
|----------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------|
| Szívizom             | csökkent szívfrekvencia<br>csökkent (pitv.) izomerô | fokozott szívfrekvencia<br>fokozott izomerő              | $\beta_1 \\ \beta_1$ |
| Szerv, szervrendszer | Paraszimpatikus ingerlés                            | Szimpatikus ingerlés                                     | Adrenerg<br>receptor |
| Érrendszer           |                                                     |                                                          |                      |
| Bőratrériák          | -                                                   | vazokonstrikció                                          | $\alpha_1$           |
| Hasi artériák        | -                                                   | vazokonstrikció                                          | $\alpha_1$           |
| Vázizomartériák      | -                                                   | vazokonstrikció                                          | $\alpha_1$           |
|                      |                                                     | vazodilatáció (keringő adr.)<br>vazodilatáció (kolinerg) | $\beta_2$            |
| Koronáriák           | vazodilatáció (?)                                   | vazokonstrikció                                          | $\alpha_1$           |
|                      |                                                     | vazodilatáció (csak adr.)                                | $\beta_2$            |
| Erektilis szervek    | vazodilatáció                                       | ?                                                        | -                    |
| Vénák                | -                                                   | vazokonstrikció                                          | $\alpha_1$           |
| Agyi artériák        | vazodilatáció (?)                                   | vazokonstrikció                                          | $\alpha_1$           |

| Szerv, szervrendszer | Paraszimpatikus ingerlés | Szimpatikus ingerlés                        | Adrenerg<br>receptor    |
|----------------------|--------------------------|---------------------------------------------|-------------------------|
| Gasztroint. traktus  |                          |                                             | -                       |
| Fali simaizomzat     | fokozott motilitás       | csökkent motilitás                          | $\alpha_1$ és $\beta_2$ |
| Záróizmok            | elernyedés               | kontrakció                                  | $\alpha_1$              |
| Bronchusok           | kontrakció               | elernyedés (fôleg adrenalin)                | $\beta_2$               |
| Piloerect. izom      | -                        | kontrakció                                  | $\alpha_1$              |
| Húgyhólyag           |                          |                                             |                         |
| Detrusor izom        | kontrakció               | elernyedés                                  | $\beta_2$               |
| Belső záróizom       | -                        | kontrakció                                  | $\alpha_1$              |
| Szerv, szervrendszer | Paraszimpatikus ingerlés | Szimpatikus ingerlés                        | Adrenerg<br>receptor    |
| Szem                 |                          |                                             |                         |
| Dilatator pupil.     | -                        | mydriasis                                   | $\alpha_1$              |
| Sphinchter pup.      | miosis                   | -                                           |                         |
| Ciliáris izom        | akkomodációi             | jelentéktelen elernyedés                    | $\beta_2$               |
| Exokrin mirigyek     |                          |                                             |                         |
| Nyálmirigyek         | erôs serosus szekréció   | kisfokú (mucin) szekréció                   | $\alpha_1$              |
| Könnymirigyek        | szekréció                | -                                           |                         |
| Emésztômirigy        | szekréció                | <ul> <li>vagy csökkent szekréció</li> </ul> | $\alpha_1$              |
| Orr-garat mirigy     | szekréció                | -                                           |                         |
| Bronchialis mir.     | szekréció                | ?                                           |                         |
| Verejtékmirigy       | -                        | szekréció (kolinerg)                        |                         |

#### *Anyagcsere* Máj

Þ

| Zsírszövet       |  |
|------------------|--|
| Inzulinszekréció |  |

| glikogenolízis  | $\beta_2$  |
|-----------------|------------|
| glukoneogenezis |            |
| lipolízis       | β2         |
| csökkenés       | $\alpha_1$ |

#### Enteric Nervous System

- Located in wall of GI tract (100 million neurons)
- Activity modulated by ANS

### Enteric Nervous system

- Preganglionic Parasympathetic project to enteric ganglia of stomach, colon, rectum via vagus & pelvic splanchnic nerves
  - increase motility and tone
  - relax sphincters
  - stimulate secretion

#### Enteric Nervous System

- Myenteric Plexus (Auerbach's)
  - between longitudenal & circular muscle layer
  - controls gut motility
    - can coordinate peristalsis in intestinal tract that has been removed from the body
  - excitatory motor neurons release Ach & sub P
  - inhibitory motor neurons release Dynorphin & vasoactive intestinal peptide

### Enteric Nervous System

- Submucosal Plexus
  - Regulates:
    - ion & water transport across the intestinal epithelium
    - glandular secretion
  - communicates with myenteric plexus
  - releases neuropeptides
  - well organized neural networks

### Visceral afferent fibers

- Accompany visceral motor fibers in autonomic nerves
- supply information that originates in sensory receptors in viscera
- never reach level of consciousness
- responsible for afferent limb of viscerovisceral and viscerosomatic reflexes
  - important for homeostatic control and adjustment to external stimuli

#### Visceral afferents

- Many of these neurons may release an excitatory neurotransmitter such as glutamate
- Contain many neuropeptides
- can include nociceptors "visceral pain"
  - distension of hollow viscus

# Neuropeptides (visceral afferent)

- Angiotension II
- Arginine-vasopressin
- bombesin
- calcitonin gene-related peptide
- cholecystokinin
- galamin
- substance P
- enkephalin
- somatostatin
- vasoactive intestinal peptide

### Autonomic Reflexes

#### Cardiovascular

- Baroreceptor –HeartRate increases if RR decreases.
- Bainbridge reflex- HR increases if venous pressure increases

#### GI autonomic reflexes

- smell of food elicits parasympathetic release of digestive juices from secretory cells of GI tract
- fecal matter in rectum elicits strong peristaltic contractions to empty the bowel

# Higher control of ANS

- Many neuronal areas in the brain stem reticular substance and along the course of the tractus solitarius of the medulla, pons, & mesencephalon as well as in many special nuclei (hypothalamus) control different autonomic functions.
- ANS activated, regulated by centers in:
  - spinal cord, brain stem, hypothalamus, higher centers (e.g. limbic system & cerebral cortex)

# Central Autonomic Regulation

- Major relay cell groups in brain regulate afferent & efferent information
- convergence of autonomic information onto discrete brain nuclei
- autonomic function is modulated by  $\Delta$ 's in preganglionic SNS or Para tone and/or  $\Delta$ 's in neuroendocrine (NE) effectors

# Central Autonomic Regulation

- different components of central autonomic regulation are reciprocally innervated
- parallel pathways carry autonomic info to other structures
- multiple chemical substances mediate transduction of neuronal infomation

- Nucleus Tractus Solitarius
- Parabrachial Nucleus
- Locus Coeruleus
- Amygdala
- Cerebral Cortex
- Hypothalamus
- Circumventricular Organs (fenestrated caps)

# Central control of the Autonomic NS



# Amygdala: main limbic region for emotions

-Stimulates sympathetic activity, especially previously learned fear-related behavior

-Can be voluntary when decide to recall frightful experience - cerebral cortex acts through amygdala

-Some people can regulate some autonomic activities by gaining extraordinary control over their emotions

Hypothalamus: main integration center

Reticular formation: most direct influence over autonomic function

#### Hipothalamus

- Integrates the info from the homeostasis
- Organises those responses that are necessary to maintain homeostasis (autonom, endocrin, somatic components)

|              | Elülső rész, regio      | Középső rész          | Hátsó rész             |
|--------------|-------------------------|-----------------------|------------------------|
|              | preoptica               |                       |                        |
| Akut sérülés | insomnia                | hyperthermia          | hypersomnia            |
|              | hyperthermia            | diabetes insipidus    | emócionális zavarok    |
|              | diabetes insipidus      | endokrin zavarok      | vegetatív zavarok      |
|              | -                       |                       | poikilothermia         |
| Krónikus     | insomnia                | Medialis rész         | amnesia                |
| károsodás    | komplex endokrin zavar  | memóriazavar          | emócionális zavarok    |
|              | (pubertas praecox)      | emócionális zavarok   | poikilothermia         |
|              | hypothermia             | hyperphagia, obesitas | vegetatív zavarok      |
|              | szomjúságérzet hiánya   | endokrin zavarok      | kompex endokrin zavar  |
|              |                         | Lateralis rész        | (pubertas praecox)     |
|              |                         | emócionális zavarok   |                        |
|              |                         | étvágytalanság        |                        |
|              |                         | szomjúságérzet hiánya |                        |
| Működés      | alvás/ébrenlét,         | érzékelés, hő- és     | érzékelés, öntudat,    |
|              | hőszabályozás, endokrin | folyadékháztartás,    | hőszabályozás, komplex |
|              | szabályozás             | endokrin szabályozás  | endokrin szabályozás   |