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Computational psychiatry: the brain as a phantastic organ
Karl J Friston, Klaas Enno Stephan, Read Montague, Raymond J Dolan

In this Review, we discuss advances in computational neuroscience that relate to psychiatry. We review computational 
psychiatry in terms of the ambitions of investigators, emerging domains of application, and future work. Our focus 
is on theoretical formulations of brain function that put subjective beliefs and behaviour within formal 
(computational) frameworks—frameworks that can be grounded in neurophysiology down to the level of synaptic 
mechanisms. Understanding the principles that underlie the brain’s functional architecture might be essential for 
an informed phenotyping of psychopathology in terms of its pathophysiological underpinnings. We focus on active 
(Bayesian) inference and predictive coding. Specifi cally, we show how basic principles of neuronal computation can 
be used to explain psychopathology, ranging from impoverished theory of mind in autism to abnormalities of 
smooth pursuit eye movements in schizophrenia.

Introduction
Computational psychiatry uses formal models of brain 
function to characterise the mechanisms of psycho-
pathology, usually in a way that can be described in 
computational or mathematical terms. Computational 
psychiatry has arrived:1–3 the fi rst international compu-
tational psychiatry meeting was held in 2013, and 2014 
saw the inception of the Max Planck Society-
University College London initiative on compu tational 
psychiatry and ageing research—and the fi rst UK 
computational psychiatry course. Several computational 
psychiatry units are emerging worldwide.

In this Review, we aim to provide tangible examples 
of computational psychiatry and to explain how it 
motivates mechanistic research in systems neuro-
science; research that is being, or will soon be, 
translated into clinical neuroscience. First, we 
consider the properties a computational formulation 
must possess to be useful in psychiatry. We focus on 
active inference or predictive coding as an example 
(panel). We emphasise the importance of active 
inference by showing how it contextualises other 
formal treatments. We conclude with some examples 
of how theoretical principles can unify apparently 
disparate aspects of psychiatric disorders. We will 
consider functional and dissociative symptoms, soft 
neurological signs in schizophrenia, interoceptive 
inference and autism, dysconnection models of 
delusional (false) beliefs, and formal models of 
interpersonal exchange. We chose these examples to 
show the breadth of psychopathology that can be 
understood in terms of one pathology; namely, false 
inference that can be ascribed to neuromodulatory 
failures at the synaptic level. This Review is 
prospective, in that most of the examples we consider 
relate to the promise of the future—much of the work 
that substantiates the points we make has yet to be 
undertaken.

The phantastic organ
Many formal or computational schemes could 
characterise psychopathology, ranging from parallel 
distributed processing or neural network theory and 

dynamical systems theory, to reinforcement learning 
and game theory. However, these theoretical frameworks 
do not address the central problem encountered in 
psychiatry—ie, the production of false beliefs. The 
problems that concern psychiatrists are, almost 
universally, abnormal beliefs and their behavioural 
sequelae (eg, dysmorphophobia, paranoid ideation, 
organised delusional systems, hope lessness, poor 
self-worth, suicidal intent, obsessional thoughts, 
disorientation, false memories, and so on). This fact 
demands computational frameworks that deal with 
inference or beliefs and their neurophysiological 
realisation.

Within cognitive neuroscience, a new theory is 
emerging that helps us to understand false beliefs and 
how these arise from pathophysiology at the synaptic 
level. This perspective shifts away from the brain as a 
passive fi lter of sensations (or an elaborate stimulus–
response link) towards a view of the brain as a statistical 
organ that generates hypotheses or fantasies that are 
tested against sensory evidence. In short, the brain is 
now considered a phantastic organ (from Greek 
phantastikos, the ability to create mental images). For 
many people, this perspective can be traced back to 
Hermann von Helmholtz and the notion of unconscious 
inference: that is, a pre-rational mechanism by which 
visual impressions are formed (eg, the seemingly 
automatic but erroneous belief that the sun rises and 
sets in the sky, as opposed to the truth that the Earth 
rotates around it).4 In the past decade, the basic idea 
has been formalised and generalised to include deep or 
hierarchical Bayesian inference about the causes of 
sensations and how these inferences induce beliefs, 
movement, and behaviour.5–9

Predictive coding and the Bayesian brain
Modern versions of Helmholtz’s ideas are now among 
the most popular explanations for message passing in 
the brain and are usually portrayed in the setting of the 
Bayesian brain hypothesis as predictive coding.9–12 
Predictive coding is not a normative or descriptive 
scheme, it is a process theory with a biologically 
plausible basis—there is now much circumstantial 
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anatomical and physiological evidence for predictive 
coding in the brain.12–16 In this scheme, neuronal 
representations in higher levels of cortical hierarchies 
generate predictions of representations in lower levels. 
These top-down predictions are compared with 
represen tations at the lower level to form a prediction 

error (associated with the activity of superfi cial 
pyramidal cells). This mismatch signal is passed back 
up the hierarchy, to update higher representations 
(associated with the activity of deep pyramidal cells). 
For example, a high-level representation of a face 
would predict visual features encoded in early visual 

 Panel: Glossary of terms 

Aberrant salience
The aberrant assignment of too much salience or precision to 
cues and events in the environment—usually associated with a 
hyperdopaminergic state in the brain.

Active inference
A corollary of the free energy principle that describes the process 
of inferring the causes of (sensory) data, which have to be 
actively chosen or sampled.

Bayes’ rule
A rule for updating beliefs based on the fact that the probability 
of two events occurring together is the probability of the fi rst 
event, assuming the second has occurred, times the probability 
of the second event occurring (and vice versa).

Bayesian brain
The notion that neuronal computations comply with Bayesian 
principles, such that neuronal representations are updated to 
produce posterior beliefs or expectations (about the causes of 
sensations) by combining prior expectations and sensory data 
according to Bayes’ rule.

Dysconnection
The notion that psychopathology results from dysfunctional 
integration of distributed neuronal processes, usually at the 
synaptic level. This concept should be contrasted with 
disconnection, which refers to the anatomical disruption of 
long-range (extrinsic) connections at the level of white-matter 
tracts and axonal processes.

Embodied
Embodied is usually used in the context of embodied cognition 
(or mind) to emphasise that all aspects of cognition and 
perception are shaped by the body and physical (or physiological) 
exchanges with the external (or internal) environment.

Exteroceptive
Exteroceptive sensations are generated from outside the body—
eg, sensory input from the retina and somatosensory organs. 
Exteroception includes hearing, vision, and touch.

Free energy principle 
A description of biological processes as minimising (variational) 
free energy—a statistical measure of the surprise or improbability 
of sensory data, under a model of how those data were generated.

Force-matching illusion
The illusion that forces that are generated by an individual’s own 
action are perceptually smaller in magnitude than when the 
same force is generated by someone else.

Interoceptive 
Interoceptive sensations are generated from within the body—
eg, sensory input from chemoreceptors, the gastrointestinal 
tract, and some cutaneous receptors.

Itinerancy 
A dynamical behaviour in which a system wanders through its 
state space in an itinerant fashion, exploring diff erent states.

Message passing 
A concept from computer science in which messages are 
exchanged among processes. In the brain, the messages 
correspond to neuronal spiking in axonal connections. The 
(neuronal) messages invoke neuronal processes determined by 
synaptic connections and microcircuits.

Optimum decision theory 
A normative theory of choice and behaviour under uncertainty, 
based on Bayesian principles and rationality. It is also known as 
the game theory or Bayesian decision theory.

Precision 
The inverse dispersion or variance of a variable. A precise 
variable will take a value near its mean with high confi dence 
or certainty.

Predictive coding 
A scheme to infer the causes of data streams that was developed 
originally for signal processing and uses a model of how the data 
were generated. Predictive coding is now one of the most 
popular metaphors for message passing in the brain.

Proprioceptive 
Proprioceptive sensations report the state and motion of the 
body. They include nociception (pain) and equilibrioception 
(balance).

Reinforcement learning 
A branch of machine learning inspired by behavioural 
psychology that models behaviour as the maximisation of 
expected reward.

Self-organised criticality 
The tendency of coupled dynamical systems to move towards 
regimes of instability that are characterised by critical slowing 
and phase transitions (similar to edge of chaos).

Sensory attenuation 
The transient suspension of attention to the sensory 
consequences of an action—eg, the attenuation of visual motion 
(optical fl ow) sensations during rapid eye movements.
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cortex. Any mismatch between descending predictions 
and low-level features will generate ascending 
prediction errors that might change the high-level 
representation into a smiling face. This recursive 
exchange of signals suppresses prediction error at each 
level of the hierarchy to provide a hierarchical 
explanation for sensory inputs at the lowest (sensory) 
level. In computational terms, neuronal activity is 
thought to encode beliefs or probability distributions 
over external states that cause sensations (eg, my visual 
sensations are caused by a face that is smiling). The 
simplest encoding associates the belief with the 
expected value of a (hidden) cause or expectation. 
These causes are referred to as hidden because they 
have to be inferred from their sensory consequences. 
For example, a smiling face is the hidden cause of 
visual sensations that has to be inferred from, and only 
from, visual input.

In summary, predictive coding represents a biologically 
plausible scheme that enables the brain to update beliefs 
about the world with sensory samples (fi gure 1). Neuro-
anatomy and neurophysiology can therefore be regarded 
as a distillation of causal structure that embodies a 
generative model, which produces predictions of 
sensations in a Helmholtzian sense. The implications for 

perception are intimated nicely in Arcimboldo’s vegetable 
garden (fi gure 2) and in Kandel’s17 discussion of the 
beholder’s share:

“The insight that the beholder’s perception involves a 
top-down inference convinced Gombrich that there is no 
‘innocent eye’—that is, all visual perception is based on 
classifying concepts and interpreting visual information. 
One cannot perceive that which one cannot classify.”17

Figure 2: Giuseppe Arcimboldo, The Vegetable Gardener (1590)
Arcimboldo used fruits and vegetables to create faces in his paintings.17,18 Faces 
are probably one of the most important (hidden) causes of sensations.19

Figure 1: Hierarchical neuronal message passing system that underlies predictive coding
Neuronal activity encodes expectations about the causes of sensory input, and these expectations minimise prediction error. Minimisation relies on recurrent 
neuronal interactions between diff erent levels of the cortical hierarchy. Within this model, the available evidence suggests that superfi cial pyramidal cells (red 
triangles) compare expectations (at each level) with top-down predictions from deep pyramidal cells (black triangles) at higher levels. (A) A simple cortical 
hierarchy with ascending prediction errors and descending predictions. Neuromodulatory gating or gain control (blue) of superfi cial pyramidal cells determines 
their relative infl uence on deep pyramidal cells encoding expectations. (B) Schematic example that shows the visual system. Putative cells of origin of ascending 
or forward connections convey prediction errors (red arrows) and descending or backward connections (black arrows) construct predictions. The prediction 
errors are weighted by their expected precision, which is associated with the activity of neuromodulatory systems—here, projections from ventral tegmental 
area and substantia nigra. In this example, the frontal eye fi elds send predictions to the primary visual cortex. However, the frontal eye fi elds also send 
proprioceptive predictions to pontine nuclei, which are passed to the oculomotor system to cause movement through classic refl exes. Here descending 
predictions to the visual cortex constitute corollary discharge. Every top-down prediction is reciprocated with a bottom-up prediction error to ensure predictions 
are constrained by sensory information. The resolution of proprioceptive prediction error is particularly important because it enables descending predictions 
(about the state of the body) to cause movement by dynamically resetting the equilibrium or set point of classic refl exes.
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From the Bayesian brain to active inference
If the brain is a generative model of the world, then 
much of it must be occupied by modelling other people. 
In other words, individuals spend most of their time 
predicting the internal (proprioceptive) and external 
(exteroceptive) consequences of behaviour (both their 
own and that of others). To fully appreciate the bilateral 
nature of these predictions, inference can be considered 
in an embodied context. In this setting, perception can 
be understood as resolving exteroceptive prediction 
errors by selecting the predictions that best explain 
sensations. Conversely, behaviour suppresses pro-
prioceptive prediction error by changing proprioceptive 
sensations. This suppression relies on classic refl exes, 
in which equilibrium points are set by descending 
proprioceptive predictions (fi gure 1).15 This process is 
called active inference, which involves equipping a 
predictive coding scheme with refl exes (fi gure 1).

If high-level sensorimotor expectations provide 
top-down predictions of the sensory consequences of 
moving, then the brain implicitly provides a range of 
hypotheses to infer the intentions of others. The 
exteroceptive (eg, visual) outcomes of another person’s 
movements can be predicted from the results of making 
the same purposeful movement oneself—all that has to 
be done is to infer who is moving (self vs other). This 
notion might be important for understanding false 
beliefs about agency in schizophrenia20 and provides an 
account of mirror neurons that respond to self-made 
acts and during action observation.21 However, to 
harness the mirror neuron system during action 
observation, proprioceptive prediction errors have to be 
attenuated because they would otherwise elicit 
movements in the observer that mirror the subject of 
observation (as in echopraxia). This attenuation rests 
on reducing the infl uence of proprioceptive prediction 
errors, where this infl uence is determined by their 
precision. Precision can be regarded as a measure of 
signal-to-noise, or the confi dence assigned to an 
information stream. Estimating precision is a 
fundamental aspect of inference in the brain, and can 
be regarded as encoding the expected uncertainty in 
any given context.22–24 This estimation represents a 
subtle but generic problem that the brain must solve 
and the solution might rest on modulating the gain or 
excitability of neuronal populations that generate 
prediction error.12,25,26

Ascending prediction errors in cortical hierarchies 
can be regarded as broadcasting newsworthy infor-
mation that has yet to be explained by descending 
predictions. However, the brain also has to select the 
channels it listens to. It can do this by adjusting the 
volume or gain of prediction errors that update 
expectations. This precision weighting of prediction 
errors is thought to be a generic computational process 
operating throughout the brain24 and might be mediated 
by neuromodulatory mechanisms of gain control at a 

synaptic level.27 In short, neuromodulatory gain control 
corresponds to a (Bayes-optimal) encoding of precision 
by the excitability of neuronal populations that report 
prediction errors. This cast computational light on why 
superfi cial pyramidal cells have many synaptic 
gain-control mechanisms such as those involving 
NMDA receptors and classic neuro modu latory receptors 
such as D1 dopamine receptors.28–31 Furthermore, 
predictive coding places cortical excitation–inhibition 
balance in a key position to mediate precision 
engineered message passing within and among hier-
archical levels.32 This aspect of predictive coding has 
been associated with attentional gain control in sensory 
processing25,33 and has been discussed in terms of 
aff ordance in active inference and action selection.34–36 
Crucially, the delicate balance of precision at diff erent 
hierarchical levels has a profound eff ect on inference 
and could hold the key for a formal understanding of 
false beliefs in psycho pathology.37

Interoceptive inference
Recently, investigators described emotional processing 
in terms of predictive coding or inference about 
interoceptive or bodily states.38,39 In active inference, 
motor refl exes are driven by proprioceptive prediction 
errors. Proprioceptive prediction errors compare primary 
aff erents from stretch receptors with pro prioceptive 
predictions that descend to α motor neurons in the 
spinal-cord and cranial nerve nuclei. This circuit 
eff ectively replaces descending motor commands with 
proprioceptive predictions, which are fulfi lled by 
peripheral refl exes.15 Descending predictions rely on 
deep hierarchical inference about states of the world, 
including an individual’s own body. Crucially, a similar 
principle can be invoked to explain homoeostasis (the 
control of blood pressure, glycaemia, etc), in which 
descending interoceptive predictions control autonomic 
refl exes. As with the mirror neuron system, interoceptive 
predictions constitute just one stream of multimodal 
predictions that are generated by expectations about the 
embodied self. The extension of active inference to 
include autonomic refl exes and interoceptive predictions 
raises many interesting questions.19 For example, what 
role do neuromodulators such as dopamine and oxytocin 
have in mediating the precision of prediction errors? 
What is the relationship between exteroception and 
interoception during self-observation?40 Do von Economo 
neurons convey interoceptive predictions from the 
insular cortex to the amygdala?41 Researchers in 
neuropsychoanalysis are also asking key questions about 
hierarchical inference and emotional regulation.42

The Bayesian brain and other formal theories 
Parallel-distributed processing, precision, and the 
dysconnection hypothesis
Part of the construct validity of active inference is that it 
leads to, and contexualises other formal approaches. 
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For example, formal models of schizophrenia are often 
described in terms of neuronal disconnection. There 
are two versions of the disconnection hypothesis: the 
fi rst is implied by Wernicke’s sejunction hypothesis, 
which postulates an anatomical disruption or dis-
connection of association fi bres;43 the second postulates 
ab normalities at the level of synaptic effi  cacy and 
plasticity, leading to dysfunctional integration or 
dysconnectivity among cortical and subcortical 
systems.44 Dysfunctional inte gration at the synaptic 
level coincides with aberrant neuromodulatory 
precision control in predictive coding, which relates 
closely to theories framed in terms of signal-to-
noise.29,45,46 Furthermore, this putative ab normality is 
consistent with nearly every synaptic or physiological 
theory of schizophrenia, including a dysfunction of 
dopaminergic and NMDA receptors,47,48 GABAergic 
abnormalities,49,50 and dysfunctional excitation–
inhibition balance.51 A common theme in these theories 
is failure to maintain the appropriate gain of principal 
or pyramidal cells.

Reinforcement learning, game theory, and metacognition
Other examples of formal theories in psychiatry include 
reinforcement learning and optimum decision theory. 
These frameworks have shaped many aspects of systems 
neuroscience over the past decade.52,53 They provide a 
normative account of choice behaviour with clear 
neurobiological correlates.54 Perhaps the most celebrated 
correlate is the association between dopamine and 
reward prediction error in temporal diff erence models 
of reward learning,52,55 However, there are many studies 
suggesting that dopamine also encodes precision or 
uncertainty.56–61 In active inference, reward and value are 
treated as prior beliefs that determine predictions, 
including behaviour—eg, the taste of wine if I raise a 
glass to my lips. Prior expectations therefore represent 
the reward (in reinforcement learning) or utility (in 
behavioural economics). In this setting, a negative 
reward-prediction error signals a loss of confi dence or 
precision in expectations about rewarding outcomes.62 
Applications of reinforcement learning to psycho-
pathology have been framed in terms of Bayesian 
inference and prior beliefs.63 Perhaps more tellingly, 
formal theories of aberrant salience (originally based on 
notions from reinforcement learning64) are now more 
commonly framed as theories of aberrant precision; 
particularly given the formal connection between 
precision control and attention or salience (panel).25 The 
focus on aberrant precision also speaks to theories of 
metacognition, which are prevalent in psychology and 
social neuroscience. Metacognition, or the study of 
beliefs about beliefs, often focuses on reporting the 
confi dence in decisions.65 Metacognition aff ords a 
measure of a person’s insight that has clear relevance 
for psychiatry and a direct link to subjective certainty or 
precision.66

A subtle but important advantage of describing 
reward or value functions in terms of prior beliefs (and 
the precision that is aff orded those beliefs) is that the 
beliefs that account for individual behaviour (choice) 
can be defi ned, enabling quantitative and formal 
phenotyping in terms of beliefs and attitudes.53,67 This 
approach forms the basis of many current compu-
tational psychiatry initiatives,68 and has even been 
extended to game theory models of interpersonal 
exchange. These extensions might be important, 
particularly to characterise various psychopathies and 
their genetic or physiological correlates.68,69

Dynamical systems theory and self-organisation
Finally, there has been growing interest in characterising 
brain dynamics using concepts from dynamical 
systems theory such as criticality (panel).70–72 Indeed, 
changes in the nature and deployment of coherent or 
coordinated dynamics have often been associated with 
disorders such as schizophrenia as evidence of 
functional dysconnection.74 Criticality and itinerant 
dynamics relate to inference by providing a rich 
dynamical repertoire that enables the brain to respond 
quickly to changing inputs.75 This dynamical repertoire 
provides a wide range of hypotheses that can be used to 
explain sensory data.18,76

If precision is estimated by the brain, and precision 
has a profound eff ect on dynamical stability,77 then 
self-organised criticality is a necessary aspect of the 
functioning brain. It is this delicate control of instability 
that makes precision a key parameter in neuronal 
dynamics. 

In the next section, we look at what would happen if the 
estimation of precision was compromised. We focus not 
on normative models (that describe what the brain does), 
but on process models (that describe how the brain does 
it), because our aim is to link the phenomenology of 
psychiatric disorders to their neurophysiological and 
molecular causes.78

Neuromodulation and false inference
We have introduced a computational framework for 
action and perception, with a special focus on the 
synaptic mechanisms that might underlie false inference 
in psychiatric disorders: in brief, the formal constraints 
implicit in predictive coding mandate modulatory gain 
control for ascending prediction errors. In an article in 
2012, Edwards and colleagues79 illustrates how functional 
symptoms can be understood as false inference about 
the causes of abnormal sensations, movements, or their 
absence. This example off ered a simple neuro physio-
logical explanation of symptoms that would otherwise be 
diffi  cult to diagnose or formulate. This theme is 
repeatedly emerging in psychiatry, from false inference 
as an account of positive symptoms (hallucin ations and 
delusions) in schizophrenia,80 to the loss of central 
coherence in autism.81 Moreover, it is remarkable that the 
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same role for precision weighting of prediction errors 
emerges from diff erent theoretical treatments of learn-
ing and inference in the brain, including predictive 
coding in vision,11 free-energy accounts of perception and 
behaviour,7 and hierarchical Bayesian models of 
learning.82

Aberrant precision and sensory attenuation
A recurrent theme in many psychiatric disorders is a 
failure of sensory attenuation, with secondary con-
sequences for the acquisition and deployment of 
hierarchically deep models of the world, and inter-
personal interactions. In the context of sensory 
exchanges with the world, such as pursuit eye move-
ments, a failure of sensory attenuation means that 
sensory precision is too high in relation to the precision 
of higher (prior) beliefs about the causes of sensations. 
It is relatively easy to reproduce the key defi cits of slow 
pursuit eye movements in schizophrenia by simply 
reducing prior precision in simulations of eye tracking 
using predictive coding and oculomotor refl exes.83 This 
mechanism might explain the inability of patients with 
schizophrenia to infer regular (high-order) contingencies 
that underlie target movement and anticipate its motion 
(this failure can be revealed with use of a mask or 
occluder, so that the target’s reappearance from behind 
the occluder has to be anticipated). Because prior 
expectations are compromised in schizophrenia, vio-
lations (eg, unpredicted changes in target motion) 
paradoxically improve pursuit performance, relative to 
people without schizophrenia. This is because prior 
expectations about target motion are violated and 
confound the tracking behaviour of people with normal 
priors.83 This example makes the more general point that 
the relative precision of sensory and prior prediction 
errors is a crucial determinant of a person’s susceptibility 
to illusions and their responses to unpredicted events or 
their omissions.37 Relatively simple, well established 
frameworks such as slow pursuit eye movements, the 
mismatch negativity, and the psychophysics of illusions 
might therefore be particularly useful in psychiatric 
phenotyping, because behavioural and neuronal 
responses can be characterised in terms of precision in 
hierarchical predictive coding.24,27,84

Crucially, quantities such as prediction error and 
precision have clear neurobiological correlates that 
allow modelling. For example, if prediction errors are 
reported by superfi cial pyramidal cells in the cortex, 
then prediction errors can be measured by non-invasive 
electromagnetic techniques because these cells 
contribute most to event-related potentials and induced 
responses.85 Similarly, if precision is encoded by the 
excitability or gain of superfi cial pyramidal cells, then 
this gain can be estimated with use of biophysical 
modelling of neuronal circuits (dynamic causal 
modelling) on the basis of evoked electrophysiological 
responses.86 Much work is being done on paradigms 

that elicit prediction errors to characterise hierarchical 
message passing in people with psychiatric disorders.87 
Studies such as these could provide a computationally 
and biophysically grounded phenotype of psychiatric 
dysconnection syndromes.84 These paradigms could 
then be used with psychopharmacological manipu-
lations and genetic studies to identifi ed the precise 
synaptic mechanisms for disease and their molecular 
basis. Although these (low-level) models of eye 
movements or neuronal responses to violations exploit 
the formal constraints off ered by computational 
psychiatry, they do not touch on the deeper (high-level) 
beliefs that characterise psychosis.

Synthetic delusions
Simulation of delusional beliefs is straightforward 
because hierarchical Bayesian inference schemes such 
as predictive coding deal explicitly with expectations. 
Perhaps the best example addresses beliefs about 
agency—a key issue in schizophrenia research. Some 
patients with psychiatric disorders fail to contextualise 
the consequences of their actions and make false 
inferences about the agency or authors of their sensory 
outcomes. This is demonstrated nicely by the resistance 
of patients with schizophrenia to the force-matching 
illusion.88,89 Normally, people show sensory attenuation 
when they do something, whereas patients with schizo-
phrenia seem not to. The force-matching illusion 
reduces the perceived magnitude of self-produced 
forces relative to externally generated forces. Crucially, 
patients with schizophrenia are resistant to this illusion 
and can accurately report the forces that they produce 
themselves.88 This result can be simulated in predictive 
coding of somatosensory and proprioceptive cues by, 
precluding an attenuation of sensory precision.23 
However, this comes at a price—to produce the self-
generated force in the fi rst place, non-sensory (or prior) 
precision must be increased so that an individual’s prior 
belief that they are moving over-rides the sensory 
evidence that they are not. The problem here is that to 
explain the precise sensory information (that the force 
is always less than predicted) the person has to infer an 
opposing external force. This scenario is a good example 
of a simulated delusional belief that rests on one simple 
manipulation, a failure to attenuate sensory precision 
and compensatory increases in precision at higher 
levels of the hierarchy (fi gure 3).

Researchers are now starting to report abnormalities 
in the gain control of pyramidal cell populations in 
cortical hierarchies. For example, Fogelson and 
colleagues90 used event-related potentials and dynamic 
causal modelling to show “the diff erences between 
recurrent inhibitory connections during the processing 
of predictable and unpredictable stimuli were markedly 
attenuated” in people with schizophrenia. Similarly, 
dynamic causal modelling of functional MRI signals 
suggests a selective reduction in recurrent inhibitory 
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connections within the medial prefrontal cortex, which 
again speaks to a failure to maintain the cortical gain 
control implicit in the aberrant encoding of precision.91 
Biophysical models—used to characterise evoked 
responses (and spontaneous activity)—could become 
increasingly defi ned in functional (computational) 
terms.

Autism and interoceptive inference
Perhaps the best example of computational approaches 
to neurodevelopmental syndromes comes from research 
on autism. Much of the phenomenology of autism has 
been described in terms of false (Bayesian) inference 
that results from a loss of prior precision, relative to 
sensory precision.81,92,93 In autism, consequences of 
increases in (or a failure to attenuate) sensory precision 
are being interpreted in a developmental context. This 
inter pretation is particularly interesting in light of 
interoceptive inference because it addresses the 
acquisition of generative models that distinguish 

between self and other. It could be that a failure to 
contextualise interoceptive cues, elicited by maternal 
interactions, precludes a proper attribution of agency to 
the interoceptive consequences of affi  liative interactions; 
in other words, the infant with autism cannot learn to 
distinguish between autonomic responses elicited by 
the mother and those caused by its own interoceptive 
predictions. This concept has several interesting 
implications for attachment, theory of mind, and the 
poor central coherence that aff ects people with autism 
in adulthood.94 It also provides an interesting explanation 
for interoceptive hypersensitivity (an autonomic over-
responsiveness to interoceptive cues) in autism and a 
failure to engage with prosocial (exteroceptive) cues.95 If 
this explanation is correct, then it provides a clear 
pointer to abnormalities of (precision) gain control in 
cortical systems that mediate interoceptive inference 
(such as the anterior insular and cingulate cortex96,97) 

and transactions with others.53 Formal theories of 
autism highlight the importance of inferences about 

Figure 3: Predictive coding model in the force-matching illusion
(A) Shows a schematic of the predictive coding model used to simulate delusions and failure of the force-matching illusion in terms of aberrant precision. 
Somatosensory and proprioceptive prediction errors are generated by the thalamus, whereas the expectations and prediction errors about hidden causes 
(forces) are in sensorimotor and prefrontal cortex. Under active inference, proprioceptive predictions descend to the spinal cord and elicit output from alpha 
motor neurons (proprioceptive prediction-error units) via a classic reflex arc. As in figure 1, red connections mediate ascending prediction errors and black 
connections mediate descending predictions. The blue connection denotes descending neuromodulatory (eg, NMDA receptor) effects that mediate sensory 
attenuation. (B) The results of a force-matching simulation that was repeated under different levels of self-generated force induced by prior beliefs about 
hidden causes. For normal levels of sensory attenuation, the internally matched force was higher than was the externally generated force. Data from patients 
with schizophrenia were simulated by attenuating sensory precision and increasing the precision of prediction errors at higher levels of the hierarchy. This 
resulted in a more accurate perception of internally generated force (red). (C) Equivalent data from the force-matching task from controls and a cohort of 
patients with schizophrenia. Adapted from references 37. 

0

0·5

1·0

1·5

2·0

2·5

3·0

Se
lf-

ge
ne

ra
te

d 
(m

at
ch

ed
) f

or
ce

B

0 0·5 1·0 1·5 2·0 2·5 3·0
0

0·5

1·0

1·5

2·0

3·0

4·0

2·5

3·5

Se
lf-

ge
ne

ra
te

d 
(m

at
ch

ed
) f

or
ce

External (target) force

C

Descending modulation

Descending predictions

Sensorimotor cortex

Descending sensory
predictions

Descending motor predictions

Motor
reflex arc

Thalmus

Prefrontal
cortex

A

a

sp

ss

Ascending prediction
errors

Simulated

Empirical

Normal levels of sensory 
attenuation
Simulated attenuation
of sensory precision

Cohort without schizophrenia
Cohort with schizophrenia

Spinal
cord



www.thelancet.com/psychiatry   Vol 1   July 2014 155

Review

others, a potentially important facet of computational 
psychiatry in its own right.

Interpersonal inference
Optimum Bayesian decision theory (or game theory) 
provides a potentially important framework to quantify 
beliefs about other people that aff ect interpersonal 
exchange. Indeed, game theory has already proved useful 
in the characterisation of autism.67 Game theory is 
important because it allows the characterisation of 
interpersonal behaviour in terms of prior beliefs or 
expectations82 and for researchers to ask whether these 
diff er systematically among diff erent personality traits or 
psychiatric diagnoses. One can use several relatively simple 
models—eg, the rock-paper-scissors and beads tasks, 
which reveal a tendency for people with schizophrenia to 
reach conclusions prematurely. 98–100 The putative role of 
dopamine in encoding the precision of beliefs about 
desired outcomes is of particular interest.62 This line of 
thinking suggests that (economic) games can be used to 
formally characterise behaviour in terms of prior beliefs 
about outcomes and confi dence in those beliefs.69

We chose the above examples to show how a formal 
approach can provide generic explanations for psycho-
pathology that are physiologically grounded. However, 
one might ask if the notion of aberrant precision 
(ie, neuromodulation) is so inclusive that it is non-
specifi c? Clearly, to understand the specifi c ways that 
aberrant precision is expressed, one has to understand 
the myriad of neuromodulatory mechanisms (eg, diff erent 
neurotransmitters acting on diff erent receptor subtypes 
in diff erent parts of the brain) in relation to functional 
anatomy and neurodevelopment. This understanding 
might be necessary to understand the diversity of 
psychiatric disorders and the mechanistic basis of their 
classifi cation.

Conclusion
In this Review, we have discussed how computational 
psychiatry can use formal models of perceptual 
inference and learning to provide a mechanistic and 
functional perspective on psychopathology and its 
underlying pathophysiology. We focused on inference 
as the overarching theoretical framework; largely 

Figure 4: Formal (computational) models for nosological (or normative) descriptions of psychopathology
Much of this roadmap is common sense (and speculative) but we try to make the point that formal models with a process theory (eg, predictive coding) can make 
bilateral predictions about behavioural and neuronal responses (eg, mismatch negativity responses to oddball stimuli). As such, they can be used as observation 
models of empirical (psychophysical and physiological) data. This (model inversion) furnishes model evidence—for selecting among competing models or 
hypotheses—and model parameters that quantify an individual’s beliefs and their neuronal encoding (eg, NMDA receptor dependent plasticity in the oddball 
paradigm). In turn, these can be used to exploit individual variability for stratifi ed psychological or pharmacological therapy. SANS=Scale for the Assessment of 
Negative Symptoms. SAPS=Scale for the Assessment of Positive Symptoms.
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because it can formalise perception and behaviour in 
terms of probabilistic beliefs. By assuming that the 
brain engages in some form of active inference, 
neuronal dynamics and message passing can be 
associated with Bayesian belief updating. This enables 
some remarkably specifi c predictions about the eff ect of 
functional or synaptic dysconnections. We focused on 
neuromodulatory failures and how they can be 
understood in terms of an aberrant encoding of 
subjective precision or uncertainty, leading to false 
inference that can be expressed at many diff erent 
levels. This computational approach necessarily 
enforces a mechanistic and quantitative view of 
psychopathology—a view that can accommodate 
phenomenology ranging from soft neurological signs 
in schizophrenia to theory of mind in autism, using 
exactly the same computational principles. The 
quantitative (and parametric) character isations off ered 
by compu tational psychiatry could enrich traditional 
psychiatric classifi cation. Furthermore, the use of 
formal models might lead to levels of description that 
might, or might not, be appropriate for particular 
disorders. The roadmap for computational psychiatry 
(fi gure 4) highlights the integrative role of formal 
(process) models in establishing construct validity 
among nosological constructs and underlying neuronal 
processes and shows how this link might translate into 
therapy. Although roadmaps like this can be compelling, 
their navigation is usually a slow and challenging 
process.
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