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We analyzed the color terms in the World Color Survey (WCS)
(www.icsi.berkeley.edu/wcs/), a large color-naming database ob-
tained from informants of mostly unwritten languages spoken in
preindustrialized cultures that have had limited contact with mod-
ern, industrialized society. The color naming idiolects of 2,367 WCS
informants fall into three to six ‘‘motifs,’’ where each motif is a
different color-naming system based on a subset of a universal
glossary of 11 color terms. These motifs are universal in that they
occur worldwide, with some individual variation, in completely
unrelated languages. Strikingly, these few motifs are distributed
across the WCS informants in such a way that multiple motifs occur
in most languages. Thus, the culture a speaker comes from does not
completely determine how he or she will use color terms. An
analysis of the modern patterns of motif usage in the WCS
languages, based on the assumption that they reflect historical
patterns of color term evolution, suggests that color lexicons have
changed over time in a complex but orderly way. The worldwide
distribution of the motifs and the cooccurrence of multiple motifs
within languages suggest that universal processes control the
naming of colors.

basic color terms � universality

English and many other languages spoken in industrialized
societies include 11–12 basic color terms. In contrast, there

is great diversity in color terminology across languages spoken
in preindustrialized cultures, with some languages using as few
as two or three color terms, and other languages using more. To
account for this diversity, Berlin and Kay (1) proposed two
conjectures: (i) there exists a limited set of ‘‘universal’’ categories
from which all languages draw their color lexicons, and (ii)
languages ‘‘evolve’’ by adding color names in a relatively fixed
sequence. There is now overwhelming empirical support for the
first conjecture (1–4). The second conjecture has been more
difficult to evaluate, in part because it has proven difficult to
compare color naming across languages, and in part because it
is difficult to test an inherently time-dependent process with
synchronic data.

In this paper, we explore an important idea that links these two
conjectures: that color lexicons occur in only a modest number
of distinct, universal color-naming systems, which can be placed
in an ordered hierarchy from simple to complex based on the
number of categories into which color space is lexically parti-
tioned. We evaluated this idea by analyzing the data of the World
Color Survey (WCS) (www.icsi.berkeley.edu/wcs/), a corpus of
color-naming data from 110 world languages. The results of our
analysis indicate that color-naming lexicons tend to cluster
statistically into just a few systems, which we call motifs, which
occur, with some individual variation, in the lexicons of infor-
mants living in all parts of the world. In this sense, motifs are
universal. Analysis further revealed a striking cooccurrence of
multiple distinct motifs within most of the WCS languages.

We then examined Berlin and Kay’s second conjecture, on the
hypothesis that within-language lexical diversity is a marker for
lexical change in synchronic data. In broad agreement with
Berlin and Kay and their collaborators (5–7), our analysis
suggested that color terms change over time in a principled way.

Results
Cluster Analysis. Traditionally, linguists and anthropologists in-
terested in color naming across cultures have supposed that each
language has a particular set of color terms in its vocabulary, so
they have started their analysis at the level of the language (1, 8).
To avoid that assumption, we carried out a cluster analysis of the
WCS at the level of the idiolect (the personal language variety
of the individual speaker), without regard to language of origin.

The WCS dataset consists of the color terms provided by 2,616
informants, each speaking one of 110 languages, in response to
a standard set of 330 Munsell color samples (Fig. 1A), which were
presented one at a time in a fixed pseudorandom order. To
compare color naming across WCS languages, we used K-means
cluster analysis of native color terms to derive a universal lexicon
to which all color terms could be glossed (4). Our analysis of
chromatic color-naming patterns revealed eight statistically sig-
nificant clusters (Fig. 1B). These clusters glossed easily to
English basic color terms or their composites: namely, RED,
GREEN, BLUE, GRUE (‘‘green-or-blue’’), YELLOW-OR-
ORANGE, BROWN, PINK, and PURPLE. For the present
study, we added three achromatic color categories, glossed as
BLACK (for color-naming patterns that included the darkest
achromatic color sample in the WCS chart), GRAY (for patterns
that included one or more achromatic samples but excluded the
black and white samples), and WHITE (for color-naming pat-
terns that included the lightest achromatic color sample). The
diversity within color categories is illustrated by the concordance
maps in Fig. 1B, where each sample within the WCS array (Fig.
1A) is false-colored with a hue corresponding to its gloss and a
lightness corresponding to the concordance with which the gloss
was used. Thus, we arrived at an objective mapping of all of the
color words used by all of the WCS informants into 11 universal
glossed color terms.

In the present analyses, we reassembled each informant’s
color-naming data into his or her own objectively glossed
color-naming system. Then, we used K-means analysis to cluster
the individual color-naming systems of the 2,367 informants who
provided color terms for 320 or more of the 330 color samples
in the WCS chart [90.5% of WCS informants, representing 109
of 110 languages, excluding language 31 (Eastern Cree), because
only one informant provided names for 320 or more color
samples (see Methods)].

Fig. 1C shows our results for assumed numbers of clusters
ranging from K � 1 to K � 9. Each multicolored rectangle is the
concordance map obtained from all of the informants included
in one of the K clusters. Each graphic element within each map
represents the proportion of informants (the lightness of the
element) assigned to that cluster who used the most prevalent
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gloss (the false-color hue of the element) to name the corre-
sponding color sample in the WCS chart. A striking feature of
these concordance maps is the distinct (light) regions of high
concordance (near 1.0), separated by well-defined boundary
regions (dark) of low concordance (�50%). The main types of
concordance map are evident by K � 3–6 clusters, and these
types persist with systematic but incremental variation out to at
least K � 15 clusters (maps for K � 1–15 shown in Fig. S1). All
of the maps display a dominant RED region, and most display
a clear YELLOW-OR-ORANGE region, but they vary notably
in the partition of the cool region of the WCS chart (corre-
sponding to the English terms ‘‘green,’’ ‘‘blue,’’ and ‘‘purple’’).

We use the term ‘‘motif’’ to denote the patterns of color term
vocabulary and usage illustrated by these concordance maps. We
chose this term to convey the notion that our analysis revealed
recurring patterns of color naming that repeated, with individual
variation, throughout the WCS dataset, much as an element
might be repeated, perhaps with variation, throughout a musical,
literary, or artistic work.

The structure of these motifs is clearly reminiscent of the

‘‘stages’’ of color term evolution proposed by Kay and colleagues
(1, 6, 7), although several motifs have no perfect counterpart in
those stages. For example, at K � 4, {BLACK/WHITE/RED}
(hereafter, the Dark motif) is similar to Stage II in both Berlin
and Kay (1) and Kay and Maffi (7). However, also at K � 4, the
{BLACK/WHITE/RED/YELLOW/GRAY} motif (the Gray
motif) does not correspond exactly to any of the stages but is a
candidate for Kay and Maffi’s (7) Stage IIIa, if we are willing to
allow GRAY to correspond to their BLACK. The K � 4
{BLACK/WHITE/RED/YELLOW/GRUE} motif (the Grue
motif) corresponds closely to Stage IV of Berlin and Kay (1) and
Stage IVb of Kay and Maffi (7). However, that motif bifurcates
at K � 5, adding a {BLACK/WHITE/RED/YELLOW/GRUE/
PURPLE} motif that does not correspond to any of the stages
of Kay and colleagues, as far as we know. At K � 4, the
{BLACK/WHITE/RED/YELLOW/GREEN/BLUE/PUR-
PLE} (the ‘‘GBP’’ motif) corresponds reasonably well to Berlin
and Kay’s (1) Stage VI. Other correspondences and differences
between our motifs and the stages from Kay and colleagues are
marked in Fig. 1C. It is important to note that the layout within
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Fig. 1. Glossary and motifs in the WCS. (A) The WCS color chart, arranged according to Munsell hue (horizontal) and value (vertical), with 10 neutral samples
(leftmost column). (B) Concordance maps of the 11 color terms, in false color, with the color terms used in this paper. (C) Concordance maps of the color-naming
systems (motifs). Columns indicate solutions for K clusters (K � 1 is the whole dataset). Titles are motif names. Roman numerals indicate corresponding stages
from Berlin and Kay (parentheses) or Kay and Maffi (brackets). At K � 4 (concordance maps enlarged for clarity), 614 informants used the Green/Blue motif, 1,063
used the Grue motif, 313 used the Gray motif, and 377 informants used the Dark motif.
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which the various motifs appear in Fig. 1C is a purely statistical
hierarchy of associations, and it should not be construed as a
temporal hierarchy of color term evolution.

How Many Motifs? It is clear from inspection of Fig. 1C that most
of the variation in color naming among WCS informants is
captured in the motifs obtained for K � 3–6, which suggests that
there are only about three to six motifs in the WCS. Three lines
of quantitative analysis support this conclusion (see Methods).
First, we used Gap Statistic analysis (9), which compared the
degree of clustering in the WCS dataset to that in a represen-
tative sample of simulated uniform reference datasets. The Gap
Statistic indicated that K � 3 is the optimal number of clusters.
Second, we calculated the degree of clustering within our motifs
by using the C-index, which was derived from a comparison of
within- vs. between-cluster similarities as K was varied. The
C-index suggested that K � 4 is optimal. Finally, we compared
within-cluster pairwise agreement among WCS informants. For
K � 6, there was, on average, greater agreement among informants
within K-means clusters (concordance � 0.55) than there was
within the natural languages of the WCS (concordance � 0.53).

Although our three analyses suggested slightly different op-
timum values of K, they all indicated that most of the variance
in the WCS could be accounted for by only a few canonical
color-naming motifs. Our analysis does not refute the existence
of other distinct but minority motifs. Indeed, the concordance
maps at higher values of K (Fig. 1C) reveal higher-order motifs
that are reminiscent of other stages proposed by Kay and
collaborators (1, 6, 7). However, these motifs are relatively rare
and require a value of K that is larger than our analyses suggest.

Universality Across, Diversity Within Languages. Our K-means anal-
ysis reveals only three to six motifs, many fewer motifs than there
are languages in the WCS. Therefore, each motif is widespread
and is observed in many linguistically unrelated languages (Fig.
2B). In this sense, the motifs are universal, and they challenge us
to understand what universal processes underlie their structure.
The small number of statistically significant motifs, which occur
in unrelated languages, leads us to seek an explanation for their
structures that stresses universal neurobiological, cognitive, or
linguistic processes. Although there has been notable progress
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Fig. 2. Within-language diversity in color naming. (A) Diversity in 110 WCS languages. Each pie chart represents one WCS language (numbers at the top). The
wedges within pie charts are the proportion of informants assigned to each motif at K � 4 (color codes on the top correspond to the enlarged clusters in Fig.
1C). Excluded informants named fewer than 320 of the 330 color samples. (B) Examples of WCS data from four languages; language numbers from A. The top
two rows are the two K � 6 branches of the GBP (Green�Blue�Purple) motif; the second two rows are the two K � 5 branches of the Grue motif, both of which
are united as single motifs at K � 4. False colors indicate glossed color terms (Fig. 1B). Notice the similarity among speakers from different continents (rows) and
the diversity among speakers of each language (columns).

Lindsey and Brown PNAS � November 24, 2009 � vol. 106 � no. 47 � 19787

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S



on this issue recently (10, 11), there is currently no full consensus
view on the details of such an explanation (10, 12–16).

Next, we determined the prevalence of each of the motifs at
K � 4 (Dark, Gray, Grue, and GBP) among the informants
speaking each of the WCS languages. The results of this analysis
(Fig. 2 A and B) reveal remarkable within-language diversity.
Examples of individual languages containing multiple motifs
appear in Fig. 2B. The modal number of motifs per language was
three (Fig. 3A), the median number was also three, and only
seven languages (6.4%) had single motifs. Most languages
(70.6%) contained three or four motifs defined at K � 4.

We tested the robustness of this unexpected result in three
ways. First, we repeated the analysis for other values of K (2 �
K � 15). The modal number of motifs per language was always
greater than one. Second, we obtained substantially the same
results (Fig. 3A, gray bars) when we reanalyzed the entire dataset
by using spectral clustering (17), a modern clustering method
that has certain advantages over traditional techniques like
K-means or hierarchical clustering. Third, we asked whether this
diversity was due to noisy data, or to informants who did not
understand the task. We used hierarchical clustering to create a
four-cluster solution, while culling those informants whose color-
naming systems fell outside a threshold dissimilarity range for
each cluster. This aggressive culling method eliminated the data
from 688 informants (29% of the 2,367 who named at least 320
colors). The average concordance among informants within
these new clusters was 0.7, which falls at the 90th percentile of
all individual WCS languages. The resulting motifs were indis-
tinguishable from the K � 4 K-means solution. When we
recalculated the number of clusters per language, three was still
the modal number of motifs per language (Fig. 3A, white bars).
Therefore, we are confident that the results shown in Figs. 2 and
3A are robust: most languages are diverse in the color-naming
behavior of their informants. Webster and Kay (18) have also

noted significant within-language diversity in the focal colors of
informants who share color lexicons.

These analyses allow us to reject two extreme statistical
hypotheses. One is that individuals within languages conformed
perfectly in their color-naming behavior. The other is that
individuals chose their motifs strictly at random from among the
four motifs, without regard to conformity with the other mem-
bers of their community. If that were the case, about 0.95 of WCS
languages should contain all four motifs defined at K � 4. This
is far more than the observed fraction, which is 0.28 (the
rightmost black bar in Fig. 3A).

Why don’t all speakers of a given language use the same motif?
One might think that a typical WCS ‘‘language’’ might be made
up of several distinct languages or dialects, but this is unlikely to
explain the within-language diversity, because informants from
each language were dialectically uniform so far as the field
workers were aware and were almost always recruited from a
single locality. However, there remain three other plausible
explanations. (i) Maybe some of the color terms are loanwords,
which might have entered a language from migration, trade, or
intermarriage. (ii) Maybe subgroups within a culture developed
a specialized color vocabulary because they need one. (iii)
Maybe the motif diversity is an artifact of the method of data
collection, and the receptive vocabulary of understood terms
might vary less across individuals than the (productive) color-
naming data of the WCS suggest. Any of these three reasons,
alone or in combination, could be invoked to explain the
existence of multiple color-naming systems within a language.

Whatever its proximal causes, diversity in color term usage is
a ubiquitous feature of color naming in WCS languages. Al-
though it may seem reasonable to characterize the color lexicon
of a language by its predominant motif, our analysis reveals a
richness of color cognition within preindustrial languages that is
not well captured by such a strategy.

Trajectories of Color Term Change. Now we turn to Berlin and Kay’s
second conjecture, namely that color lexicons change over time,
starting with fewer color terms, and adding color terms a few at
a time, in a relatively fixed order, to arrive finally at about 11
basic color terms. The languages presently spoken in the world
are taken to instantiate the various ‘‘stages’’ along these trajec-
tories of color term change. Are the data of the WCS consistent
with this conjecture?

For our analysis, we considered the fraction of speakers (xi)
who used each of the four main motifs. This dataset forms a
simplex (0 � xi � 1; i � {Grue, GBP, Dark, Gray}; �i xi � 1),
and each language can be plotted in barycentric coordinates
within a regular tetrahedron (Fig. 3B). Languages with one motif
map onto the four vertices of the tetrahedron, languages with
two motifs map onto the edges, languages with three motifs map
onto the facets, and languages with four motifs map into the
interior of the tetrahedron.

The simplex representation of WCS diversity revealed that
most languages fall near the lower facet of the tetrahedron (xGray
� 0; Fig. 3B). Consistent with this observation, a principal
components analysis on the log ratio-transformed data (17)
yielded two principal components, which accounted for 88.5% of
the dispersion in the transformed whole dataset (89.4% in the
culled dataset) and defined a surface near the Dark–Grue–GBP
facet of the tetrahedron. This result suggested that the Gray
component is relatively minor, in agreement with the Gap
Statistic result that K � 3 is the optimal number of WCS motifs.
Therefore, we collapsed the tetrahedral simplex onto a reduced-
dimension triangular simplex defined by the Dark, Grue, and
GBP vertices (Fig. 3 C and D).

We then used the simplex to examine Berlin and Kay’s (1)
second conjecture by using Kay’s principle that ‘‘diachronic
change implies synchronic variation’’ (ref. 5, p. 262). According
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Fig. 3. Languages with multiple motifs. (A) Histogram of the number of
languages with one to four motifs at K � 4. Full dataset (black bars indicate
K-means; gray bars, spectral clustering). White bars indicate aggressively
culled data (hierarchical clustering). (B) Full dataset of languages (spheres) in
tetrahedral coordinates based on the prevalence of the motifs within lan-
guages obtained by K-means analysis. False colors indicate the most frequent
motif: Dark (black), Gray (yellow), Grue (cyan), and GBP (blue). Full dataset (C)
and culled dataset (D) projected onto the Dark–Grue–GBP facet, with contour
plots of language density based on a Gaussian sampling kernel (� � 0.01).
Languages on the rising facets of the tetrahedron project to the edges of the
triangles in C and D.
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to this principle, languages that are undergoing change from one
stage of color term evolution to another (e.g., between Dark and
GBP, via Grue) will have multiple motifs represented among
their speakers. This suggests that an analysis of the current
spatial distribution of languages within the simplex (synchronic
variation) can be used to make inferences regarding temporal
variations in lexicon (diachronic change). If we analyze a large
and diverse enough sample of languages (the WCS), the distri-
bution of languages in the simplex will reveal the trajectories the
languages followed as the modern lexicons emerged.

A plausible mapping of Berlin and Kay’s (1) stages of color
term evolution onto our motifs framework (Fig. 1C) suggests
that languages may progress along a Dark 3 Grue 3 GBP
trajectory. In its purest form, this hypothesis predicts that
lexically stable languages should map to the simplex vertices,
whereas languages ‘‘in transition’’ (6, 7) should map to the two
edges joining the Dark and Grue, and the Grue and GBP
vertices, respectively. Examining the 2D simplex (Fig. 3 C and
D), there is a prominent string of languages stretching from the
Grue vertex to the GBP vertex, along the Grue–GBP edge, and
the density plot shows contours running alongside that edge
[note: all languages on the Gray–Grue–GBP facet project onto
the Grue–GBP edge when we reduce to 2D, in both the full and
the culled datasets (Fig. 3 C and D)]. A similar, although less
compelling, distribution of languages runs between the Dark and
Grue vertices. The relative weakness of the Dark–Grue trajec-
tory might be due to the particular languages in the WCS sample.
However, it is also plausible that the Dark-motif ‘‘stage’’ was the
ancestral state, but that it was prevalent long before the WCS
sample was collected. According to this view, the Dark-to-Grue
trajectory in the synchronic WCS dataset is weakly represented
because it is ancient, not because it was unlikely to occur.

Less consistent with the Dark3 Grue3 GBP hypothesis are
two other features of the simplex data, which appear in both the
full WCS dataset (Fig. 3C) and in the heavily culled subset (Fig.
3D): a few languages map to the Dark–GBP edge of the simplex,
and many languages contain more than two motifs, and therefore
plot well into the interior of the simplex. Given the limitations
of synchronic data, we can do little more here than point out that
these features suggest that color terms changed along more
reticulate pathways, rather than the relatively linear trajectory
required by the Dark3 Grue3 GBP motif model. Kay and his
colleagues (6, 7) have also suggested more complex trajectories.

Discussion
Our analyses indicate that the color terms used by the WCS
informants are drawn on a universal glossary of 11 color terms,
and that the particular suite of color terms used by each
informant is drawn on a set of about three to six universal
color-naming systems, which we call motifs. Each motif is
characterized by distinct regularities in the patterns of color
naming among the idiolects of a subset of WCS speakers.

A striking and unexpected result of this analysis is the diversity
of motifs within most WCS languages, and yet the remarkable
similarity among the color-naming systems of individuals speak-
ing completely unrelated, internally diverse, languages. This
counterintuitive result is all the more remarkable when we
consider that within-culture communication often promotes
within-language standardization of the color lexicon, instead of
the diversity that we observe. Likewise, a lack of contact between
cultures that are widely separated geographically is expected to
facilitate diversity across languages. Instead, patterns of color
naming worldwide coalesce around a small number of distinctive
motifs. Thus, whatever its proximal causes, an individual’s choice
of a color lexicon is highly constrained.

Variations in within-language diversity across the WCS pro-
vide a way to examine color term evolution by using synchronic
data. Our simplex analysis of these variations indicates that color

lexicons change over time and do so in a reasonably orderly
fashion. Taken as a whole, the results of our motif analyses are
broadly in agreement with the work of Berlin and Kay and their
coworkers (1, 6, 7), and add to the growing body of evidence in
support of the universality in color naming and color term
evolution.

What is universal across cultures that leads to universal motifs,
and what is specific to the individual speaker that leads to
diversity among informants? As we discussed above, different
individuals within a culture may experience different features in
the environment to be more or less salient, depending on their
needs, habits, or roles in society. This could easily lead to
diversity among speakers in their color term usage. It is also
possible that some of these needs and salient features might be
universal across environments and cultures, contributing to the
establishment of universal motifs. However, it is hard to imagine
that the motifs, and the color terms that they contain, would be
so similar across cultures in the absence of some universal
neurobiological or cognitive factors, which show individual
variation but which are common to all people and constrain the
development of individual speakers’ color lexicons.

Methods
Derivation of the Universal Glossary of Color Terms. In previous work (4), we
used K-means cluster analysis to obtain glosses for the chromatic color terms
used by all 2,616 WCS informants to name one or more of the 320 chromatic
samples, but none of 10 achromatic samples, in the WCS color chart. We
encoded the terms as 320-element binary vectors (v), indicating whether that
term labeled the ith color sample in the WCS chart. Distance (dissimilarity)
between two color term vectors was defined to be one minus the Pearson
correlation coefficient calculated for the two vectors. We compared the total
within-cluster dissimilarity in the K-means partition of the data to that ob-
tained by identical analysis of a sample of synthetic uniform reference distri-
butions. The Gap Statistic (9) showed that the optimal number of clusters in
the dataset was eight.

Derivation of the Motifs. Here, we analyzed the glossed color-naming systems
of 2,367 WCS informants by using K-means analysis. The color-naming data-
sets were represented as 11 � 330 element binary matrices L(n) (n � 1, . . . ,
2,367). L(n) coded the association between the informant’s color terms, re-
duced by translation to the 11 universal glosses and the 330 color samples in
the WCS color chart. The entries lij

(n) were either 0 or 1. If the jth color sample
was assigned gloss i, lij

(n) � 1, and all other entries in the jth column of L(n)

were 0.
The centroids of the K-means clusters, C(k) (k � 1, . . . , K), were 11 � 330

real-valued matrices. Each element cij
(k) was the prevalence of the ith gloss (out

of 11) applied to the jth color sample (out of 330) by all of the informants
assigned by K-means to the kth cluster. Hence, �i�1

11 cij
(k) � 1 .

As a test of consistency in our K-means analysis, we ran the analysis for each
value of K twice, each based on the minimum obtained from 100 iterations.
The agreement in the clusters obtained from these two runs always exceeded
0.99.

Dissimilarity Metric. We used D12 � 1 � J(S(1), S(2)) as a dissimilarity metric to
express the distance between two speakers’ color-naming systems, S(1) and S(2),
or between an informant’s color-naming system and a K-means cluster cen-
troid (i.e., S(2) � C(k)). J(.) represents the similarity between S(1) and S(2) (0 �

J(.) � 1). When we computed J(.) between two speakers’ color-naming sys-
tems, we were interested in the proportion of cases where their glossed color
terms matched; i.e., when the corresponding elements of both S(1) and S(2)

were 1. Hence,

J�S�1�, S�2�� � ��
i, j

sij
�1�sij

�2���N, [1]

where N is the number of samples named by both informants. Thus, when
comparing color-naming systems, J(.) is the Jaccard coefficient. We also used
J(.) to compute the dissimilarity between each informant’s color-naming
system (S(1) � L(n)) and a cluster centroid (S(2) � C(k)) in our K-means analysis.
Recall that the entries of each column of C(k) are real-valued, and represent the
prevalences of the 11 glosses in the current cluster k for a particular color
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sample. In this case, Eq. 1 represents the weighted Jaccard coefficient, and
similarity was based on an informant’s glossed terms for the samples, each
weighted by their prevalence among current members of a particular cluster,
rather than on the binary matches.

Optimal Numbers of Motifs. To use the Gap Statistic method (9) to determine
the optimal number of clusters, we created synthetic reference distributions
of color-naming systems by using a competitive process among N color-
naming mechanisms. These mechanisms had 2D Gaussian-distributed re-
sponse functions, which were mapped into the 2D coordinate frame of the
WCS color chart so that a particular color sample, located in the chart at
location (�, y), activated mechanism n by amount:

Rn��, y� � e������n�2

2�n,�
2 �

�y�yn�2

2�n,y
2 �. [2]

The gloss assigned to a given color sample was the mechanism yielding the
largest response at the location (�, y). Each synthetic color-naming system was
created by random assignment of parameters in Eq. 2. N was drawn from a
normal distribution whose parameters (� � 6.75, � � 1.86) closely matched
that of the glossed WCS. Coordinates �n and yn were uniformly distributed
across the WCS chart, and log(��,n) and log(�y,n) were uniformly distributed
between 0.3 and 0.6. The resulting reference distributions closely approxi-
mated the WCS in the numbers of glossed terms deployed per ‘‘informant’’
and in the sizes of the regions of the WCS chart assigned a particular term
(except that WCS informants had significantly more one- and two-sample
color categories than predicted from our model). In this way, we created 20
‘‘populations’’ of 2,367 simulated color-naming systems. Then, we partitioned

each into different numbers of clusters by using K-means analysis, we calcu-
lated the total within-cluster, pairwise dissimilarities for each such partition,
and we compared them to those obtained for the WCS dataset by using Gap
Statistic analysis.

We calculated the C-index (19, 20) as a function of the number of clusters,
K: CI(K) � (Sum � Min)/(Max � Min), where Sum is the sum of the total
within-cluster pairwise dissimilarities for all K clusters. Let Nwc be the number
of these pairwise dissimilarity calculations. Then, Max is the sum of the Nwc

largest dissimilarities among all dissimilarities, calculated without regard for
cluster membership, and Min is the sum of the Nwc smallest dissimilarities
among all dissimilarities. Sum � Min approaches 0 when the clusters are well
separated from one another; hence, a small C-index is better. An optimal value
of K corresponds to a minimum or knee in CI(K).

Spectral Clustering. In our implementation of the algorithm of Ng et al. (21),
the ijth entry in the affinity matrix was Aij � e�Dij

2/ 2�0.35�2, where Dij is the
dissimilarity in color naming between the ith and jth informants (as described
above). Subsequent clustering was based on the six largest eigenvectors of the
normalized affinity matrix A. This resulted in a Gray category, a GBP category,
a Dark category, and three Grue categories; we combined the three Grues into
a single Grue category.
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