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Does the ability to develop numerical concepts depend

on our ability to use language? We consider the role of

the vocabulary of counting words in developing numeri-

cal concepts. We challenge the ‘bootstrapping’ theory

which claims that children move from using something

like an object-file – an attentional process for responding

to small numerosities – to a truly arithmetic one as a

result of their learning the counting words. We also

question the interpretation of recent findings from

Amazonian cultures that have very restricted number

vocabularies. Our review of data and theory, along with

neuroscientific evidence, imply that numerical concepts

have an ontogenetic origin and a neural basis that are

independent of language.
Introduction

We have the intuition that our thoughts are inseparable
from, indeed dependent upon, the words we use for them.
This is especially so for numerical cognition where the
claim is that some basic aspects of numerical cognition
depend crucially on language, be it knowledge of the
vocabulary of counting words or the recursive capacities of
syntax and morphology. This argument has been made
from neuropsychology, where arithmetical facts are held
to be stored in a verbal format; it has been made from
neuroimgaing, where numerical tasks appear to activate
language areas; it has been made from developmental
psychology where counting words are claimed to be
necessary for concepts larger than three or four; and,
most recently, it has been made from studies of Amazonian
tribes whose language lacks counting words. In this
article, we challenge all of these claims.
Number terminology

Natural number and arithmetic

Numerical terms and notation can serve a variety of non-
mathematical functions. The numeral 4 can denote the
position in a sequence, a TV station, a particular football
player, a sign of good luck, and so on. For all of these
examples there are other ways to refer to the concepts in
question. A sequence can be represented by letters and a
TV station can be called NBC or ITV. The distinctive
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numerical concept, and the one that is the focus of this
article, is numerosity (the cognitive equivalent of the
cardinality) as normally denoted by the natural numbers.
Each numerosity N has a unique successor, NC1, which is
why we can say, for example, that a set of 5 objects
includes a set of 4 objects, and so on [1].

Of course, it is possible to estimate or approximate an
exact numerosity, and to use continuous variables to do so.
For objects of the same type – say, apples – the greater the
number of apples, then the greater the amount of apple
stuff or weight of apples. It would be possible to estimate
the number of a set of apples, or to compare the cumulative
magnitudes of two sets of apples on the basis of these
continuous variables. However, this does not mean that
the mental representation of numerosities must be
approximate or continuous. In fact, we know that humans
are able to think of both an approximate and exact value
for a given set. (See [2] in this series of papers, and [3].)

General vs specific considerations

However, to identify the numerosity of sets larger than
about 4, some kind of item-by-item enumeration is
required [4]. Typically, this will involve counting using
the familiar vocabulary of specialized count words
(one, two,.) but it could also involve sequenced hatch
marks or mapping objects onto a set of known numerosity,
such as body parts [5]. For sets with large numerosities,
we might not bother, or be able, to enumerate, and instead
rely on methods of approximation. Therefore, we need to
distinguish possession of the concept of numerosity itself
(knowing that any set has a numerosity that can be
determined by enumeration) from the possession of re-
representations (in language) of particular numerosities.

The relationship between language and number in the

brain

At a broad level, the functional relationship between
number and language should be evident from their
relationship in the brain. Ever since Henschen’s extensive
case series in the 1920s, it has been known that disorders
of language and calculation abilities can occur indepen-
dently [6]. Recent detailed case studies have confirmed
that it is possible for previously numerate adults to have
severely impaired language but relatively well-preserved
numerical skills [7,8]. Perhaps the clearest reported case
is the neurological patient I.H., suffering from semantic
Opinion TRENDS in Cognitive Sciences Vol.9 No.1 January 2005
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dementia, whose language comprehension was at chance
in most tasks, and whose production was limited largely to
stereotyped phrases; however, he scored at or near ceiling
on single digit and multi-digit calculation [9,10].

More sophisticated approaches define specific roles for
language in adult arithmetic. For example, in the ‘Triple
Code’ model [11], some operations, such as number
comparison and subtraction, depend on manipulations
over the ‘analogue magnitude code’, whereas arithmetical
facts are stored in the ‘verbal code’. Addition and
multiplication, which are held to depend more on stored
facts than subtraction and division, will therefore be more
vulnerable to language disturbances than subtraction and
division. However, I.H. was as unimpaired in retrieving
stored facts [10].

The Triple Code model also distinguishes exact calcu-
lation, which is held to depend on understanding exact
numerosities, from approximate magnitudes, which are
the responsibility of the ‘Analogue Magnitude’ code.
Evidence in support of this comes from patients who can
handle approximate quantities but not exact calculation
[12]. It is not clear from presentations of this model how
these two codes, analogue and verbal, interact in the
process of arithmetic.

Neuroimaging studies make it clear, at least to us, that
the crucial brain systems involved in numerical process-
ing are in the parietal lobe, some distance from any
classical language areas. In a valuable meta-analysis,
Dehaene and colleagues distinguish the bilateral parietal
brain areas that have been found to be more active in
estimation and approximation tasks (horizontal segment
of the intraparietal sulcus and the posterior superior
parietal sulcus) from the area more active in exact
calculation tasks, and therefore more dependent on
language (left angular gyrus). However, the left angular
gyrus is not a classical language area, although active in
verbal working-memory tasks [13]. It has been known at
least from the time of Gerstmann [14], that lesions to this
area can cause impairment to exact calculation without
concomitant language disorder (see [15] for a review). One
neuroimaging study has found that activity in Broca’s
area is depressed relative to rest during numerical tasks,
suggesting that numerical and linguistic processing are
even in opposition [16].

Even if the intimate relationship between number and
language is not reflected in adult neuroanatomy, a
relationship might nevertheless be a requirement for the
development of the neural basis of number.
Developmental perspectives

The strong Whorfian claim (of lingusitic relativism) is that
language shapes the development of numerical concepts.
It is rarely clear from the defenders of this position
whether they believe that it is the concept of numerosity
itself that depends on language, or whether it is concepts
of particular numerosities that are entailed. Both Mix,
Huttenlocher and Levine [17], and Carey [3] assign to
language a causal role in people’s acquisition of concepts of
natural numbers and their properties. As Carey offers an
extensively developed account, we focus on hers here.
www.sciencedirect.com
Causal dependence on the list of counting words

A crucial assumption for Carey is that infants’ numerical
abilities involve two different mechanisms, one for small
sets of 4 or less and another for larger sets. Parallel
individuation of objects, with its built-in limit of 3–4,
serves the small number range [3,18–20]. An accumulator
process that converts discrete counts into analogue
quantities, serves the larger number range. The demon-
strations of behavioural discontinuities between small
and larger numbers in infants studies justify this
dichotomy [18–20], but there are also failures to find the
presumed limit in the small number range [21–23].
Carey’s account of infants’ parallel individuation of objects
introduces an unusual use of the notion of ‘object files’ and
their function.

Object files for representing numerosity?

The function of an object file is to ‘point’ to a visual object
and integrate the perception of the properties of that
object, such as size, shape, color, and so on [24,25]. If a
child believes that the word two referred to a particular set
of two object files, it would presumably be useable only in
connection with the two objects they pointed to. It would
be a name for that pair of objects, not for all sets that share
with that set the property of twoness. A particular set of
pointers cannot substitute for (is not equal to) another
such set without loss of function, because its function is to
point to a particular pair of objects, whereas the function
of another set of pointers is to point to a different pair.
There is no reason to believe that there is any such thing
as a general set of ‘two pointers’, a set that does not point
to any particular set of two objects, but represents all sets
of two that do so point. Any set of two object files is an
instance of a set with the ‘twoness’ property (a token of
twoness), but it can no more represent twoness than a
name that picks out one particular dog (e.g. Rover) can
represent the concept of a dog. Being able to abstract away
from the particularities of the transient representation of
items of current attention, to represent their numerosity,
seems to be a precondition for making use of this system to
bootstrap concepts of number rather than a consequence
of using it.

It is most unusual to use a processing constraint – the
number of objects whose features can be bound in a
transient store – as the basis for the development of a
system of knowledge. Nevertheless, let us grant the case
for sake of argument that there is a discontinuity in
infants’ numerical discriminations and that the small
number range uses Carey’s version of an object-file
mechanism.

Language first?

Carey’s argument goes forward as follows: once the first
three or four count words are memorized they can be
treated as separate from the non-precise quantifiers of
some, few, many. The meaning of the count words is
induced from the fact that they map to different sized sets
of object files and they are used in a fixed order, with each
successive word coming to represent a larger object-file
set. This allows for the integration of the infants’
numerical representations of small numbers and their
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short list of memorized count words. Language serves as
the mechanism for creating a restructuring of the non-
verbal notions of number and, according to Carey, does so
as follows.

A child comes to recognize the ordering of the referents
of one, two, three and four because a set of two active object
files has as a proper subset a set of one object file, and so
on. The child infers that addition applies to the things
referred to by these words because the union of two sets of
object files yields another set of object files (provided the
union does not create a set greater than 4). This is the
foundation of the child’s belief in the successor principle:
every natural number has a unique successor. The crucial
bootstrapping comes when the child realizes that it is
possible to go beyond the narrow limits of parallel
individuation of objects, to sequences of objects that are
not all within the span of immediate apprehension. This
move is prompted by the use of count words for sets of
more than 4 objects. That is, the child having established
the correspondences for N%4 – the word ‘one’ refers to
the state of the object-file system where there is just
one object; the word ‘two’ refers to the set of two objects
(which is one more than one); and so on – makes
the inference that other syntactically equivalent words
(five, six, and so on) refer to numerosities greater than the
immediate span of apprehension.

This account entails that meanings are first assigned
only to the words that have been mapped onto states of the
object-file system. So, when the child is unable to give
reliably, on request, four, five, or six objects, it has to be
assumed, on this model, that he or she knows nothing
about the mapping, and that these words will refer
indiscriminately to numerosities greater than 3. However,
there is evidence that although children at this stage of
development are unable to give exactly what number is
designated by ‘five’, they know that only number-changing
manipulations of the target set will require a change of
number word [22,23]. Although young three-year-old
children fail a ‘Give N’ task when N is greater than 3,
they can succeed on prediction and checking tasks with set
sizes ranging from 1–5 [23]. The implication is that young
children understand how numbers work before they have
fully mastered the mapping from particular numbers to
particular numerosities.

Carey’s position makes clear predictions about the
numerical capacities of children growing up in cultures
where there are few or no counting words, and especially
where there is no linguistic means for creating ever
larger number names. One prediction is that the
children will not develop ‘true’ understanding of the
natural numbers because it is the system of counting
words that is crucial. Other semiotic means for repre-
senting number, such as using body-parts [5,26], tally-
ing, or drawings in the sand (D.P. Wilkins, Ph.D. thesis,
Australian National University, 1989) are not mentioned
as enabling the development of numerical concepts
beyond 3 or 4, the limit of the object-file system of
parallel individuation. We concur with Harris [27,28]
that it is a mistake to dismiss these alternative re-
representation systems.
www.sciencedirect.com
Amazonian mysteries

The Tououpinambos

One of the earliest accounts of the numerical abilities in
people with restricted number vocabularies comes from
the English philosopher John Locke [29], who wrote:

‘Some Americans I have spoken with (who otherwise of
quick and rational parts enough) could not, as we do, by
any means count to 1000; nor had any distinct idea of that
number.’ He was not referring to the founders of the USA,
but to the Tououpinambos, a tribe from the depths of the
Brazilian jungle, whose language lacked number names
above 5. A system of number names was not, in Locke’s
view, necessary to have ideas of larger numbers, because,
he says, we construct the idea of each number from the
idea of one – ‘the most universal idea we have’. By
repeating ‘this idea in our minds and the repetitions
together. by adding [the idea of] of one to [the idea of] one
we have the complex idea of a couple’. And so on. Thus, he
says, concepts of numbers are independent of their names.
Indeed the ‘Americans’ can reckon beyond five ‘by showing
their fingers, and the fingers of others who were present.’
Even the idea of infinity, he proposes, is simply a
consequence of understanding that we can repeat the
procedure for adding one as many time as we wish.
Possessing a system of number names is useful for keep
track and communicating, but not necessary for having
the ideas of distinct numerosities and their infinity.

Locke’s point was that number names ‘conduce to well-
reckoning’ by enabling us to keep in mind distinct
numerosities. That is, the possession of a system of
number names can be helpful in learning to count and to
calculate, but is not necessary for the possession of
numerical concepts. Recent reports about the Pirahã
[30,31] and Mundurukú Amazonian Indians [31] provide
informative test cases of Locke’s conclusion.

The Pirahã and Mundurukú

The Mundurukú language uses the count words for 1, 2
and 3 consistently, and 4 and 5 somewhat inconsistently
[31]. The Pirahã do not even use the words for 1 and 2
consistently [30]. How would members of these groups
perform on various non-verbal tasks involving numeros-
ity? The amazing result was that both groups succeeded
on non-verbal number tasks that used displays represent-
ing values (in one study) as large as 80.

The findings on the Mundurukú are especially note-
worthy, because an elegant research design was used that
incorporated the fact that some Mundurukú adults and
children are bilingual (in Portuguese). In the study [31],
there were groups of adults and children who were
monolingual and groups who were bilingual. The chil-
dren’s groups were divided into younger (!5 yrs) and
older, as well as those who had had language instruction
and those who had not. Finally, there was a control group
of French adults. The various groups were asked to point
to the more numerous of pairs of dots, whose numerosity
could be as large as 80. All the groups showed the effects of
number size and number difference in number comparison
tasks [32]. There was no effect of language or schooling
amongst the Mundurukú. The data for the number-
difference effect for the Mundurukú groups and the
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French adult control groups were extremely close.
Although the Pirahã study did not have as many subjects
and conditions, the results were comparable. They too
were able to engage in a variety of comparison and non-
verbal arithmetic tasks – despite their lack of any clear
number word vocabulary. The Pirahã solved the problems
in ways that overlap extensively with those used by
English- and French-speaking individuals [32].

The key claim of defenders of the ‘language thesis’ is
that language is necessary for mental representation and
manipulation of numerosities greater than 4. In the
Mundurukú study, exact addition and subtraction prob-
lems using sets of objects were tested. According to the
theory, the participants who were bilingual, and therefore
knew the counting words of Portuguese, should have
performed like the numerate French controls, or at least
more like the French controls. But this was not the case.
Both adults and children performed exactly like the
monolingual speakers [31]. The Mundurukú continued
to deploy ‘approximate representations. in a task that
the French controls easily resolved by exact calculation’
[31]. Why, we may ask, did the bilingual participants not
use their Portuguese counting words? Mundurukú culture
differs from Western culture in innumerable ways, and it
certainly uses numbers far less often than we do. It
remains possible that one or more of these many
differences were responsible for the differences in per-
formance, and not just the lack of a counting vocabulary.

This evidence from cultures with very limited number
vocabulary does not convince us that differences in
performance can be explained in terms of language rather
than other aspects of culture (see also Box 1). Of course, it
remains possible that Pirahã and Mundurukú have few
number words because numbers are not culturally
important and receive little attention in everyday life.
Causal dependence on the recursive capacities of

language

Bloom proposed that children’s initial counting is
embedded in natural language as a result of their learning
relevant distributional facts [33]. As they learn more and
more count words, they infer that there are more count
words. With enough experience, they infer that natural
numbers are discretely infinite. Hauser, Chomsky and
Fitch [34] offer a statement as to how this might work.
This is that the recursion involved in the mathematical
idea of discrete infinity derives from a recursive capacity
Box 1. Questions for future research

† How do varieties of language, especially varieties of number-

naming systems, promote or inhibit acquisition of basic numerical

concepts?

† Is there a critical or sensitive period for acquiring numerical

concepts?

† How do developmental language disabilities affect the acquisition

of arithmetical skills? Can there be a selective deficit of arithmetical

development?

† Why do mathematically literate individuals continue to use the

non-verbal, approximate numerosity system?

† How does the neural network for numerical processing develop

from infancy to adulthood?
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that is the foundation of, and unique to, human languages.
Carey [3] makes the same in-principle assumption. We are
puzzled about this claim. Because the mental magnitudes
that represent larger numbers are additive, the recursive
infinity of magnitude is already entailed.

Instead, we are making the case that understanding
recursive infinity is not derived from language at all. To
illustrate this, in one study [35] children aged 5 years to
8 years 6 months (written 8;6) were asked to participate in
a thought experiment about the effect of repeated
additions or ‘counting-on’ from what they said was a
very large number. Many of the younger children showed
that they were still finding the language to express
themselves, as was the case for D.A. (5;9). When asked
whether adding would yield a higher number, she replied
yes, because ‘You still put one and they get real higher’.
Some of the older children were explicit about the
possibility of inventing count words to satisfy the
successor principle for natural numbers. For example,
A.R. (7;3) said there is no end to the numbers, ‘Because you
see people making up numbers. You can keep making them,
and it would get higher and higher’. [35].

There are several language experts who hold that,
despite the fact that some speakers of languages have
restricted number terms, they can easily acquire them.
Dixon quotes Kenneth Hale, an expert on Warlpiri
(a language with terms for one, two, few, many): ‘the
English counting system is almost always instantaneously
mastered by Warlpiris who enter into situations where the
use of money is important (quite independently of formal
Western-style education.’ ([36], p 108). A potent example
of the rapid uptake of the idea of discrete infinity comes
from Saxe [5], who studied the Oksapmin of New Guinea,
a group who used use a fixed number of sequential
positions on their body as ‘count words’. There came a time
when some of the men were flown out to work on
plantations and received money for their labor. Within
6 months, the Oksapmin had introduced a generative
counting rule [5]. It is hard to see how such rapid learning
of a new vocabulary for abstract objects like numerosities
could proceed so quickly, if the learners did not already
possess the concepts.

Finally, although the Pirahã do not use numerals in
their everyday life, Everett (personal communication)
reports that it is easy to teach their children to count in
‘Portuguese’ if the pronunciation rules are adjusted to fit
the phonetics of Pirahã and the teaching is embedded in
the everyday task of stringing beads.

Conclusions

Cognitive development reflects neural organization in
separating language from number. Indeed, the onto-
genetic independence of the number domain has been
argued vigorously by the authors of many previous
publication looking at both normal [4,35,37] and abnormal
[38–40] development of numerical abilities. It would be
surprising if there were no effects of language on
numerical cognition, but it is one thing to hold that
language facilitates the use of numerical concepts and
another that it provides their causal underpinning. That
very young children’s knowledge of count words is
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incomplete is far from surprising. They constitute a serial
list of sounds: there is nothing about the sound one that
predicts that the sound for ‘two’ will follow, and so on. In
addition the young child has to master the extensive
coordination requirements of counting. Locke put the
matter elegantly more than three hundred years ago:
‘Children, either for want of names to mark the several
progressions of numbers, or, not having yet the faculty to
collect scattered ideas into complex ones and range them
in a regular order and so retain them in their memories, as
is necessary to reckoning, do not begin to number very
early, nor proceed in it very far.’

Acknowledgements

B.B.’s research in this area is supported by the Commission of the
European Communities (HPRN-CT-2000–00076 Neuromath and MRTN-
CT-2003–504927 NUMBRA) and by the Leverhulme Trust (F/07 134/U).
R.G.’s work is supported by NSF (No. SPR9720410).

References

1 Butterworth, B. (1999) The Mathematical Brain, Macmillan
2 Feigenson, L. et al. (2004) Core systems of number. Trends Cogn. Sci.

8, 307–314
3 Carey, S. (2004) On the Origin of Concepts, Daedulus
4 Gelman, R. and Gallistel, C.R. (1978) The Child’s Understanding of

Number, Harvard University Press
5 Saxe, G.B. (1981) The changing form of numerical reasoning among

the Oksapmin. Indigenous Mathematics Working Paper. No 14,
UNESCO Education

6 Henschen, S.E. (1920) Klinische und Anatomische Beitrage zu
Pathologie des Gehirns, Nordiska Bokhandeln

7 Rossor, M.N. et al. (1995) The isolation of calculation skills. J. Neurol.
242, 78–81

8 Remond-Besuchet, C. et al. (1999) Selective preservation of excep-
tional arithmetical knowledge in a demented patient. Math. Cogn. 5,
41–63

9 Cappelletti, M. et al. (2002) Why semantic dementia drives you to the
dogs (but not to the horses): A theoretical account. Cogn. Neuro-
psychol. 19, 483–503

10 Cappelletti, M. et al. (2001) Spared numerical abilities in a case of
semantic dementia. Neuropsychologia 39, 1224–1239

11 Dehaene, S. and Cohen, L. (1995) Towards an anatomical and
functional model of number processing. Math. Cogn. 1, 83–120

12 Lemer, C. et al. (2003) Approximate quantities and exact number
words: Dissociable systems. Neuropsychologia 41, 1942–1958

13 Paulesu, E. et al. (1993) The neural correlates of the verbal component
of working memory. Nature 362, 342–345

14 Gerstmann, J. (1940) Syndrome of finger agnosia: Disorientation for
right and left, agraphia and acalculia. Arch. Neurol. Psychiatry 44,
398–408

15 Cipolotti, L. and van Harskamp, N. (2001) Disturbances of number
processing and calculation. In Handbook of Neuropsychology (Berndt,
R.S. ed.), pp. 305–334, Elsevier

16 Pesenti, M. et al. (2000) Neuroanatomical substrates of Arabic number
processing, numerical comparison and simple addition: A PET study.
J. Cogn. Neurosci. 12, 461–479
www.sciencedirect.com
17 Mix, K.S. et al. (2002) Quantitative Development in Infancy and Early
Childhood, Oxford University Press

18 Carey, S. (2001) Cognitive foundations of arithmetic: Evolution and
ontogenesis. Mind Lang. 16, 37–55

19 Carey, S. (2001) On the possibility of discontinuities in conceptual
development. In Language, Brain, and Cognitive Development: Essays
in Honor of Jacques Mehler (Dupoux, E. ed.), pp. 303–321, MIT Press

20 Carey, S. and Spelke, E. Bootstrapping the integer list: Represen-
tations of number. In Developmental Cognitive Science (Mehler, J. and
Bonatti, L., eds), MIT Press (in press)

21 McCrink, K. and Wynn, K. (2004) Large number addition and
subtraction by 9-month-old infants. Psychol. Sci. 15, 776–781

22 Sarnecka, B.W. and Gelman, S.A. (2004) Six does not just mean a lot:
Preschoolers see number words as specific. Cognition 92, 329–352

23 Zur, O. and Gelman, R. (2004) Doing arithmetic in preschool by
predicting and checking. Early Childhood Res. Quart. 19, 121–137

24 Trick, L. and Pylyshyn, Z.W. (1993) What enumeration studies can
show us about spatial attention - evidence for limited capacity
preattentive processing. J. Exp. Psychol. Hum. Percept. Perform. 19,
331–351

25 Kahneman, D. et al. (1992) The reviewing of object-files: Object
specific integration of information. Cogn. Psychol. 24, 175–219

26 Wassmann, J. and Dasen, P.R. (1994) Yupno number system and
counting. J. Cross Cult. Psychol. 25, 78–94

27 Harris, J.W. (1982) Facts and fallacies of Aboriginal number systems.
In Language and Culture. Work Papers of SIL-AAB, Ser. B (Hargrave,
S. ed.), pp. 153–181, Australian Aboriginies Branch B

28 Harris, J.W. (1987) Australian Aboriginal and Islander mathematics.
Australian Aboriginal Studies 2, 29–37

29 Locke, J. (1690/1961) An Essay concerning Human Understanding
(edited J.W. Yolton), J.M. Dent

30 Gordon, P. (2004) Numerical cognition without words: Evidence from
Amazonia. Science 306, 496–499

31 Pica, P. et al. (2004) Exact and approximate arithmetic in an
Amazonian indigene group. Science 306, 499–503

32 Gelman, R. and Gallistel, C.R. (2004) Language and the origin of
numerical concepts. Science 306, 441–443

33 Bloom, P. (1994) Generativity within language and other cognitive
domains. Cognition 51, 177–189

34 Hauser, M.D. et al. (2002) The faculty of language: what is it, who has
it, and how did it evolve? Science 298, 1569–1579

35 Hartnett, P.M. and Gelman, R. (1998) Early understandings of
numbers: Paths or barriers to the construction of new understand-
ings? Learning and Instruction: J. Eur. Assoc. Res. Learn. Instruct. 8,
341–374

36 Dixon, R.M.W. (1980) The Languages of Australia (Cambridge
Language Surveys) (Allen, W.S., ed.), Cambridge University Press

37 Butterworth, B. The development of arithmetical abilities. J. Child
Psychol. Psychiatry (in press)

38 Butterworth, B. Developmental dyscalculia. In The Handbook of
Mathematical Cognition (Campbell, J.I.D., ed.), Psychology Press
(in press)

39 Butterworth, B. et al. (1999) Language and the origins of number
skills: Karyotypic differences in Turner’s syndrome. Brain Lang. 69,
486–488

40 Landerl, K. et al. (2004) Developmental dyscalculia and basic
numerical capacities: A study of 8–9 year old students. Cognition 93,
99–125

http://www.sciencedirect.com

	Number and language: how are they related?
	Introduction
	Number terminology
	Natural number and arithmetic
	General vs specific considerations

	The relationship between language and number in the brain
	Developmental perspectives
	Causal dependence on the list of counting words
	Object files for representing numerosity?
	Language first?

	Amazonian mysteries
	The Tououpinambos
	The Pirahã and Mundurukú

	Causal dependence on the recursive capacities of language
	Conclusions
	Acknowledgements
	References


