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A B S T R A C T

Connectome-based lesion symptom mapping (CLSM) can be used to relate disruptions of brain network con-
nectivity with clinical measures. We present a novel method that extends current CLSM approaches by in-
troducing a fast reliable and accurate way for computing disconnectomes, i.e. identifying damaged or lesioned
connections. We introduce a new algorithm that finds the maximally disconnected subgraph containing regions
and region pairs with the greatest shared connectivity loss. After normalizing a stroke patient's segmented MRI
lesion into template space, probability weighted structural connectivity matrices are constructed from shortest
paths found in white matter voxel graphs of 210 subjects from the Human Connectome Project. Percent con-
nectivity loss matrices are constructed by measuring the proportion of shortest-path probability weighted
connections that are lost because of an intersection with the patient's lesion. Maximally disconnected subgraphs
of the overall connectivity loss matrix are then derived using a computationally fast greedy algorithm that
closely approximates the exact solution. We illustrate the approach in eleven stroke patients with hemiparesis by
identifying expected disconnections of the corticospinal tract (CST) with cortical sensorimotor regions. Major
disconnections are found in the thalamus, basal ganglia, and inferior parietal cortex. Moreover, the size of the
maximally disconnected subgraph quantifies the extent of cortical disconnection and strongly correlates with
multiple clinical measures. The methods provide a fast, reliable approach for both visualizing and quantifying
the disconnected portion of a patient's structural connectome based on their routine clinical MRI, without re-
liance on concomitant diffusion weighted imaging. The method can be extended to large databases of stroke
patients, multiple sclerosis or other diseases causing focal white matter injuries helping to better characterize
clinically relevant white matter lesions and to identify biomarkers for the recovery potential of individual pa-
tients.

1. Introduction

For over a century the relationship between lesion location and
clinical deficits has been used to further our understanding of regional
brain function and to predict neurological outcome, particularly after
stroke (Damasio and Damasio, 1989 & Binkofski et al., 2001). Tradi-
tional voxel-based lesion symptom mapping (VLSM) has proved

particularly useful in characterizing the functional specialization of
discrete cortical regions (Fox, 2018). However, VLSM methods can be
uninformative when symptoms are not clearly linked to the damage of a
specific brain region or when the lesion extends into white matter,
causing a concomitant disconnection of different cortical regions (Lim
and Dong-Wha, 2015). Since human cognition and behavior typically
does not arise from a single brain region but rather results from
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emergent activity across neural networks via interconnected cortical
regions (Geschwind and Kaplan, 1962 & Baldassarre et al., 2016), the
potential of VLSM to accurately explain structure-function relationships
remains limited. VLSM is not suitable to characterize white matter le-
sions in large part because it relies on T1 weighted images which biases
it towards detecting necrosis and gliosis in cortical tissue. This has led
to methods that can take a network perspective that include white
matter lesions (Carter et al., 2012). In particular, connectome-based
lesion symptom mapping (CLSM) approaches are now integrating
connectivity information based on functional or diffusion weighted
imaging to improve the mapping between patient's lesions and symp-
toms (Yourganov et al., 2016 & Gleichgerrcht et al., 2017). Although
functional connectivity based CLSM approaches have proven their
clinical utility for gray matter lesions, they are unable to provide con-
nectivity information when a lesion is restricted to white matter be-
cause of a lack of meaningful BOLD signal in white matter. Several
different strategies have been developed to perform CLSM based on
structural data to investigate the clinical impact of disconnections of
white matter pathways. Typically, the strategy is to project the patient's
lesion into a normal database of streamlines to assess how approxi-
mated normative connectivity is disrupted by a lesion (Kuceyeski et al.,
2013 & Thiebaut de Schotten et al., 2011). Similarly, predefined sets of
white matter tracts in the normalized space can be used to compute
their intersection with individual lesions. Disconnections are typically
quantified by the proportional volume of white matter tract affected by
the lesion, referred to as “lesion load” (Zhu et al., 2010). Instead of
calculating the volume of the lesion within a given tract one can
compute the proportion of streamlines that are severed by the lesion
(Hope et al., 2016). There are a number of challenges with both stra-
tegies. Streamlines are a computational construct that are extremely
sensitive to arbitrary parameter choices such as angle cutoff, step length
and total number of streamlines generated, making it difficult to com-
pare results (Wei et al., 2018). Furthermore, they are known to suffer
from a hard tradeoff between the detection of true connections and the
generation of excessive false connections, particularly for crossing fi-
bers (Maier-Hein et al., 2017). Compounding the limits of this method,
volumetric measures such as lesion load can be misleading because a
major tract such as the corticospinal tract can be severed by a very
small lesion in the posterior limb of the internal capsule resulting in a
severe hemiparesis, yet a majority of its volume remains intact. More-
over, studies incorporating the alternative method: percent of tract loss,
either quantify the lesion impact at the level of individual regions or
simply provide a binary measure of whether the tract was severed
(Kuceyeski et al., 2013 & Thiebaut de Schotten et al., 2011). Only re-
cently, researchers have begun to quantify the relative amount of da-
mage to a given fiber tract connecting region pairs. Using such an ap-
proach on DTI data in a large sample of patients, Langen and colleagues
found that cognitive impairment was associated with disconnectivity,
i.e., patients with higher percentages of damaged streamlines also suf-
fered from pronounced cognitive impairment (Langen et al., 2018).
While such quantitative analyses of streamline damage represent a
promising approach, disconnectomes are constructed in the patients'
native DTI space which can produce distorted disconnectomes because
the diffusion information is corrupted in lesioned white matter tissue
(Maillard et al., 2011; de Groot et al., 2013; Theaud et al., 2017).
Tracking through regions where orientation maxima are distorted
produces distorted connectomes and consequently distorted dis-
connectomes (Greene et al., 2018). To overcome this limitation, we
here present a fast and accurate approach for estimating connectomes
and disconnectomes that does not rely on streamline tractography and
avoids tracking through lesioned white matter tissue. The approach
embeds a patient's lesion, segmented from their standard clinical MRI
data into a normative fiber orientation diffusion database. As such, the
method allows one to assess disconnection without the need for adjunct
diffusion imaging and therefore can be used in a standard clinical set-
ting.

Accurately measuring disconnectomes at the region to region level
with streamline based tractography is difficult if not impossible for
many region pairs due to systematic biases in estimating long-range
connections (Li et al., 2012; Sinke et al., 2018). As an alternative we
construct connectivity matrices using whole brain shortest path trac-
tography where region to region connectivity is weighted by shortest
path probabilities. Specifically, we use data from the Human Con-
nectome Project (HCP) to reconstruct each subject's fiber orientation
distributions (FODs) using constrained spherical deconvolution and
normalized them using FOD reorientation to a custom high-resolution
template (Raffelt et al., 2012). For each HCP subject a white matter
voxel graph is constructed in the template space using analytic tracto-
graphy, which obviates the need for lengthy probabilistic tractography
simulations (Cieslak et al., 2017). The output of analytic tractography
at each white matter voxel is a 26-element vector containing the ne-
gative log of the probabilities that a white matter structure transitions
into each of its neighboring voxels. White matter voxels located at the
gray-white boundary are defined as interface nodes. These are parti-
tioned into cortical regions using the Lausanne atlas. The shortest paths
and their probabilities can be calculated for all pairs of interface nodes
in different regions to capture region to region probability weighted
structural connectivity. However, constructing shortest-path weighted
structural networks from all pairings of the interface nodes is compu-
tationally costly because there are nearly 2,000,000,000 possible
shortest paths per brain. To expedite these computations, we show that
structural networks constructed from all possible pairs can be rapidly
and almost perfectly estimated by uniformly sampling subsets of the
interface nodes for a given region pair. After the anatomical scans from
stroke patients are normalized into our template (along with their
segmented lesion), the percent loss connectivity matrix or dis-
connectome can be obtained by querying all shortest paths that inter-
sect the lesion and by computing the proportion of shortest path
probabilities that intersect with the lesion and hence can be assumed to
be lost.

Given a particular patient's lesion size and location, the full dis-
connectome can be quite extensive, making visualization and clinical
correlation challenging. With that in mind, we describe a new graph
theoretic algorithm that quantifies the extent of cortical disconnection
and reduces the dimensionality by extracting the maximally dis-
connected subgraph containing the regions with the greatest shared
disconnectivity due to the lesion from the disconnectome or percent
connectivity loss matrix. Although thresholding can be used to reduce
the size of the disconnectome, it is an arbitrary edge based approach
that produces subgraphs with no guarantee of shared disconnectivity
due to a lesion. Our algorithm produces a clinically relevant dis-
connection subgraph that makes visualization tenable and produces a
remarkably reliable estimate of the number of cortical regions (koptimal)
making up the disconnection subgraph.

2. Methods

2.1. Normal database

The S500 dataset was collected from the Washington University-
Minnesota Consortium Human Connectome Project (Glasser et al.,
2013). Further analysis was restricted to 210 subjects without familial
relation. The data consisted of structural and diffusion scans corrected
for geometric, eddy current, and motion distortions. The diffusion vo-
lumes were collected with a spatial resolution 1.25× 1.25× 1.25mm,
using three shells at b= 1000, 2000, and 3000 s/mm2 with 90 diffu-
sion directions per shell and 10 additional b0s per shell. High-resolution
structural T1w and T2w volumes for each subject were acquired on the
same scanner at 0.7 mm isotropic resolution. Generalized fractional
anisotropy (GFA) volumes for each subject were extracted from their
generalized q-sampling imaging reconstructed HARDI data in DSI
Studio (Yeh et al., 2010) for subsequent multimodal image registration.
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2.2. Stroke database

Eleven stroke patients (mean age: 62.0 years± 9.3 standard devia-
tion; 9 male; 9 right-handed) suffering from a first-ever ischemic stroke
causing a unilateral hand motor deficit were recruited from the
University Hospital of Cologne, Department of Neurology. Inclusion
criteria were: 1) age 40–90 years; 2) ischemic stroke as verified by
diffusion-weighted magnetic resonance imaging (DWI); 3) unilateral
hand motor deficit; 4) no other neurological disease.

Exclusion criteria were: 1) any contraindication to MRI (e.g., car-
diac pacemaker); 2) infarcts in multiple territories; and 3) hemorrhagic
stroke. This study was approved by the local ethics committee and all
subjects provided informed written consent.

2.3. Multimodal template construction

Previously skull stripped, aligned, and distortion corrected T1w and
T2w volumes were obtained for each subject and then rigidly registered
to the subject's GFA volume. ANTs symmetric group wise normalization
(SyGN) method was used to construct a custom multimodal population
specific brain template from 40 HCP subjects chosen at random from
the larger dataset, using 5 iterations (Avants et al., 2010). All subjects
were spatially normalized to this custom template using multimodal
registration in ANTs. Freesurfer was used to segment gray matter from
white matter and CSF and to build surfaces of the template brain (Dale
et al., 1999). The Connectome mapper toolkit was used to parcellate the
cortical regions based on the Lausanne 60 atlas (Daducci et al., 2012).

2.4. Diffusion reconstruction

The HARDI HCP datasets were reconstructed using constrained
spherical deconvolution (CSD) with a maximum harmonic order of 8
(Tournier et al., 2007). The largest b-value shell was used during re-
construction. Using the software MRtrix, fiber orientation distributions
(FODs) for each HCP subject were generated using CSD from their
diffusion data (Tournier et al., 2012). The FODs were reoriented/
warped to the multimodal template using apodized point spread func-
tions based on the ANTs output from each subject's symmetric T1/T2/
GFA diffeomorphic registration to the custom multi-modal template.
Specifically, each FOD is decomposed into a series of weighted sphe-
rical harmonic PSFs. The amplitude of the negative lobes of the PSFs are
reduced, then each PSF is reoriented using the local affine transfor-
mation estimated from the Jacobian of the total deformation field, and
finally recombined into the full reoriented FOD (Raffelt et al., 2012).

2.5. Voxel graphs and shortest paths

White matter voxel graphs were constructed for each HCP subject
using the double-ODF method in MITTENS (Cieslak et al., 2017). To do
this, transition probabilities between each pair of adjacent voxels
(whether a face, edge or corner) are calculated with a closed form
analytic solution. Each white matter voxel where the FOD is nonzero is
treated as a node in a graph. Edges are formed to each voxel's 26 spatial
neighbors, weighted by the transition probabilities calculated by MIT-
TENS i.e. the probability that a white matter structure from the source
voxel continues into its neighbor. The voxel graph was restricted to only
white matter voxels using a white matter mask from the multimodal
template to restrict shortest paths from entering gray matter or cere-
brospinal fluid. The shortest path between any two voxels can be effi-
ciently found using Dijkstra's algorithm. It corresponds to the globally
optimal path that maximizes the product of all the probabilities at each
edge making up the path. The shortest path is assigned a weight by
taking the geometric mean of the product of the probabilities for each
edge making up the path.
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2.6. Subsampling

The complete gray-white interface consists of 64,109 white matter
voxels in our template. To find a shortest path between every possible
pair of these white matter voxels requires nearly 2,000,000,000 calls to
the Dijkstra algorithm per subject. On a 120 compute node cluster, it
takes ~24 h to calculate all possible pairs of shortest paths, making this
computation prohibitive for the full HCP dataset. To speed up the cal-
culation of shortest path probabilities by orders of magnitude, we
uniformly sample subsets of the interface voxel pairs.

Given cortical region A with m interface voxels and cortical region B
with n interface voxels, there would be m×n shortest paths if each one
was found for every possible pair which would be a lengthy computa-
tion typically involving tens of thousands of shortest paths. The com-
putation can be significantly accelerated by employing a subsampling
approach where the larger region is uniformly sampled to obtain a
subset of voxels such that the number of voxels in the subset matches
the number of voxels in the smaller region. Each voxel in the larger
region is paired uniquely to a voxel in the smaller region producing a
total of min(m,n) source-target pairings and hence shortest paths. This
is performed for each normal HCP subject for each cortical region pair
to generate unique sets of shortest paths. The subsampling approach is
illustrated in Fig. 1. In the Appendix, we validate this approach by

Fig. 1. Illustration of subsampling. (A) The white matter surface of a portion of the left precentral region (green) containing 844 voxels is plotted with a portion of the
brainstem (orange) containing 30 voxels. If all possible pairs of shortest paths were found between the regions there would be (844×30)= 25,320 shortest paths
which would be a lengthy computation. The computation can be significantly sped up by employing a subsampling approach where the larger region is uniformly
subsampled to obtain a subset of voxels such that the number of voxels in the subset matches the number of voxels in the smaller region. (B) 30 voxels subsampled
from the larger precentral region are plotted in red. Every voxel in the subset is uniquely paired to a voxel in the smaller region, producing here 30 unique source-
target pairings for shortest paths queries. (C) The 30 shortest paths found between voxels in the brainstem and precentral area trace out the CST. This procedure is
performed for each normal HCP subject to generate unique sets of pairings and shortest paths for any given cortical region pair.
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measuring the similarity between structural networks constructed from
all possible pairs of shortest paths and the subsampled shortest paths.
Our results in the Appendix show that subsampling is a fast and accu-
rate approach for studying brain connectivity.

2.7. Connectome and connectivity loss

The Lausanne60 cortical parcellation was projected onto white
matter voxels lying at the gray white interface. Note the method is
flexible and any cortical parcellation could be projected. A shortest path
probability weighted structural connectome is then constructed by
computing the shortest path from every uniformly sampled subset of
interface voxel pairs in different cortical regions for each HCP subject.
To compute the percent loss of connectivity, L, for a cortical region pair,
the cumulative weight of the shortest paths that intersect the lesion,
Win, is divided by Wtotal, the cumulative weight of all shortest paths
between the two regions to obtain the weighted fraction of potentially
damaged shortest path connections. All weights are estimated using (1).

=L W
W

in

total (2)

The connectivity loss matrix Lstroke for a given stroke patient is taken
as the average of all the loss matrices L calculated using each HCP
subject's shortest paths (as defined by that stroke patient's lesion). The
procedure for calculating the connectivity loss matrix Lstroke is sum-
marized in Fig. 2.

2.8. Maximally disconnected subgraphs

In graph theory, this problem is most similar to the heaviest k-
subgraph problem where an undirected weighted graph is given, and
the goal is to find a subgraph with k nodes with maximum total edge
weight. This problem is NP-hard but can be well approximated using a
greedy approach (Ravi et al., 1994). Given a disconnectome, such an
algorithm would extract a subgraph of k nodes whose edges have the
greatest disconnection. In our algorithm, we use a greedy approach
similar to (Ravi et al., 1994) and extend it by automatically finding an
optimal number of nodes, koptimal, to grow the heaviest subgraph. The
growth profile of the magnitude of the change in the weight of the
subgraph for each kth node added has a concave shape with a clearly
defined maximum. The magnitude at the maximum and the numbers
nodes k it occurs at we define as ΔWoptimal and koptimal.

To find the maximally disconnected subgraph Dmax, the following
approach is used. The disconnected subgraph D is initialized with the
nodes from the heaviest edge emax, from the connectivity loss matrix L.
In the case of a tie, the nodes in the edge containing the greatest cu-
mulative sum of weighted node degree are added. Each iteration k
subsequently chooses a new node, nmax∈ L−Dk−1, to add to the sub-
graph such that the sum of the edge weights to the nodes currently in

Dk−1 is maximized. The change in the weight ΔWk (from Dk−1 to Dk) is
stored in P, the disconnection profile, and Dk is stored in S for each
iteration. D is grown until all nodes and edges from L have been added.
After D is finished growing, a cubic spline is fit to the disconnection
profile in P to find koptimal and Dmax is returned from the koptimal element
in S. The procedure is summarized in Algorithm 1, where Wpre is the
weight of the subgraph at Dk−1 at the k− 1 iteration and Wpost is the
weight of the subgraph at Dk at the kth iteration, w(niL−D

,njD) is the
weight of the edge between node i and node j, and ei is edge i in the
subgraph D.

Algorithm 1.Maximally disconnected subgraph

In the appendix, we demonstrate that the greedy algorithm for

Fig. 2. Schematic of patient disconnectome construction. (A) Lesioned tissue (red) is segmented on the patients' T1 weighted volume and (B) normalized into our
high resolution T1 weighted template. (C) Shortest paths that intersect the patients' normalized lesion are found. (D) Region labels are then assigned to the end points
of each of the shortest paths. For each shortest path making up a region pair, the probability of that shortest path is calculated and added to the running total of
connective probability lost due to the lesion for that region pair. (E) The disconnectome is then computed as the fraction of connective probability loss relative to the
total connectivity probability shared for any given region pair. (C)—(E) are performed 210 times for each set of shortest paths from each of the normal HCP subjects.
The final connectivity loss matrix, Lstroke, is taken as the average of the 210 disconnectomes.
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identifying the maximally disconnected subgraph closely approximates
the exact solution. Specifically, the correlation between the change in
the weight of the subgraphs for each method has an R of 0.99. Although
this doesn't represent the similarity of the set of nodes in the subgraphs
at each iteration of k, it shows that our algorithm is accurately ap-
proximating the k-heaviest subgraph. More specifically, in the appendix
we show that the dice score for each iteration of k initially shows poor
agreement between the exact solution and our greedy one because there
is minor disagreement initially about what node should be added to
make the subgraph as heavy as possible i.e. most disconnected. As k
increases the greedy solution converges with the exact one with dice
scores of 1.0. Moreover, our greedy algorithm is rapid, taking only
seconds to find the maximally disconnected subgraph versus weeks to
find the exact solution (combinatorial).

2.9. Disconnection growth profiles

To determine the optimal size of a disconnection subgraph for a
given lesion, a population estimate from the HCP dataset is performed.
To do this the change in the magnitude of each patient's subgraph as
each node k is added from each of their connectivity loss matrix is
determined first. These 210 growth profiles are then averaged and fit
with a smooth cubic spline to get a robust global estimate of koptimal

because estimates from single HCP subjects can be noisy and the
average has minor perturbations near the peak. The koptimal, determined
from the averaged disconnection growth profiles, is then applied to the
mean of the 210 HCP connectivity loss matrices to extract the final
maximally disconnected subgraph. This process is performed separately
for each patient's lesion. In the Appendix, we demonstrate that these
growth profiles and maximally disconnected subgraphs are nearly
identical for shortest path measures across all gray-white matter in-
terface nodes and for the computationally faster subsampled set of in-
terface nodes.

2.10. Reliability

To measure the reliability of koptimal, the mean and its uncertainty
are estimated by bootstrapping. Each sampling distribution of koptimal is
constructed by randomly sampling with replacement N disconnection
profiles 10,000 times where N ranges between 2 and 209 subjects. For
each bootstrap sample in each distribution, the disconnection profiles
are averaged and the sample koptimal is recorded from the cubic spline
fit. For each sample distribution, the standard deviation and mean of
the sample koptimal are recorded.

3. Results

3.1. Connectivity loss

Our method creates a normative database of connection prob-
abilities, based on shortest paths between all region pairs for a given
atlas. In this case, there are 130 regions in the Lausanne60 atlas for 210
normal HCP subjects. Then, a spatially normalized lesion from an in-
dividual stroke patient is projected into this database and the percen-
tage reduction, i.e. loss of connection for each region pair is calculated.
Examples of the connectivity loss matrix for two stroke patients (P1, P2)
are shown in the left column of Fig. 3. Each of the plotted connectivity
loss matrices represents a mean of the 210 individual connectivity loss
matrices defined by intersecting the stroke patient's lesion with each of
the HCP subjects subsampled shortest paths. For both patients shown in
Fig. 3, the lesions involve the posterior limb of internal capsule and
adjacent thalamus. Not surprisingly, the two loss matrices have obvious
structural similarity, yet each contains additional specific disconnec-
tions unique to each patient's lesion. Note the large variability in the
magnitude of disconnection of individual connections, with some re-
gion pairs having 100% disconnection (dark red) while other region-

pair connections remaining untouched by the lesion (dark blue), de-
monstrating the sensitivity of the % loss metric.

3.2. Optimal k and the maximal disconnection subgraph

Connectivity loss matrices from each of the 210 HCP subjects,
(whose averages for two patients are as shown in the left column of
Fig. 3) are entered into our greedy algorithm to extract a set of maxi-
mally disconnected subgraphs (extracted set of connections shown in
the right column of Fig. 3). Constructing this k-heaviest subgraph is a
well-defined problem given the parameter k of how many nodes the
subgraph should contain. However, it's not clear which k is optimal to
stop growing the heaviest subgraph. In the left panel of Fig. 4, we plot
the cubic spline fit of the magnitude of the change in the total edge
weight of the subgraphs for the two patients as functions of each node k
that is added in solid along with the average in dots. This plot is gen-
erated from the mean of individual growth profiles obtained across all
210 HCP connectivity loss matrices. Thus, it reflects an average of the
change in the total edge weight estimated for each disconnection sub-
graph of the 210 HCP subjects. This is done separately for each patient.
As shown in Fig. 4 (demarcated with a +) the magnitude of the change
in the total edge weight grows with k until reaching its maximum at
koptimal and then falls off slowly as additional nodes are added to the
subgraph. This concave disconnection growth profile is present in all
patients. Consequently, the peak of the disconnection growth profile
lends itself as a natural stopping criterion and defines koptimal. For the
first (P1, red) it peaks later at k=27 compared to the second (P2, blue)
at k=24. The spline fit is necessary to ensure that the global maxima
are selected because there can be minor perturbations that lead to local
maxima being selected. This is most visible for Patient 2's raw average
plotted as the blue dotted line with minute perturbations on the left and
right of the global maximum (blue cross) that are slightly higher. In the
middle panel, we assess the reliability of koptimal by bootstrapping
10,000 randomly sampled disconnection profiles from N subjects. As
the number of subjects N used to estimate koptimal increases, the devia-
tion (shaded) around the sample mean decreases exponentially until
plateauing. The deviation around P1's mean drops quicker than P2's.

Fig. 3. Quantitative metrics of structural disconnection. A disconnectome
(Connectivity loss, left column) is shown for two patients (P1, P2). Connections
in dark red exhibit 100% connectivity loss. Regions connections in dark blue
were not impacted by the lesion. The set of connections extracted by our al-
gorithm from the disconnectome forms the maximally disconnected subgraph
(Extracted, right column). It consists of those connections between regions that
exhibit a larger proportion of connectivity loss due to the lesion. Both patients
have posterior limb-internal capsule lesions and remarkably similar dis-
connection subgraphs.
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For both patients, the error converges to a deviation of≤1 of the koptimal

estimated from the mean of 210 subjects with 100 or more subjects.
Mean deviation from the sample mean for N=105 subjects across all
11 patients in the bootstrap with is 0.66 with σ= 0.38. The two pa-
tients' normalized lesions are plotted onto our custom HCP template
brain (with average FODs also shown) on the right panel of Fig. 4. Both
stroke patients' lesions on the right in Fig. 4 were roughly the same size
containing 592 and 586 voxels respectively and both were in the right
hemisphere. Patient P1's lesion (red) extends beyond the posterior limb
of the internal capsule where it encounters a larger number of paths and
incorporates voxels with FODs describing connectivity in additional
directions besides the capsule. In contrast, Patient P2's lesion is located
almost entirely within the poster limb of the internal capsule. This
subtle difference in lesion shape has a direct impact on the dis-
connectome and is captured by the larger koptimal for the first patient.

3.3. Maximally disconnected subgraphs

Our algorithm automatically determines a unique koptimal for each
patient and returns the maximally disconnected subgraph. In Fig. 5, the
extracted maximally disconnected subnetworks are plotted on top of
the glass brain along with their corresponding maximally disconnected
matrices (Abraham et al., 2014). Region ROIs are plotted as circles with
the diameter reflecting the weighted degree of that region's total per-
cent connectivity loss. Edge thickness and color represent percent
connectivity loss between the connecting nodes, where the darker the
color and thicker the line the more disconnected the two regions. For
the first patient, major disconnections are found amongst pairs of pre-
central, postcentral, brainstem, pallidum, and temporal cortex. Simi-
larly, in the second patient, precentral, postcentral, brainstem, pal-
lidum, and thalamus comprise the most disconnected regions and
region pairs. Both patients maximally disconnected subnetworks are
mostly restricted to cortical regions in the right hemisphere, matching
the hemisphere where the stroke occurred and demonstrating the spe-
cificity of our approach.

3.4. Disconnected core

Just as it is possible to identify maximal lesion overlap from struc-
tural MRI scans to find regions that are most commonly impacted in a
cohort of patients, it is also possible to identify a core pattern of dis-
connection across overlapping subgraphs. To demonstrate this, consider
the disconnected networks of both stroke patients in Fig. 5. It is evident

that many of same regions and pairs are disconnected. By intersecting
the two maximally disconnected subgraphs, we can visualize the dis-
connected core network from stroke lesions that result in hemiparesis.
In Fig. 6, the maximally disconnected core sits on top of the right motor
network and is dominated by disconnections amongst motor regions:
precentral, postcentral, superiorfrontal, brainstem, thalamus, pallidum,
and caudate. The weight of the edges making up the core were found by
averaging the edge weights of the two patients.

3.5. Dimensionality reduction

Our algorithm reduces the dimensionality of the connectivity loss
matrix from N×N to koptimal × koptimal. The size reduction is evident in
comparing the top and bottom panels of Fig. 7. In the top panel, patient
3's full connectivity loss matrix is plotted on top of the glass brain. Note
that the full disconnectome is dominated by a majority of small percent
losses (blue) of connectivity for many region pairs with a small set of
connections showing large percent losses (orange—red). In the bottom
panel, the set of cortical regions and connections making up the
maximally disconnected subgraph are plotted on the glass brain. Our
algorithm filters out most connections and cortical regions that have
small losses and are not likely disconnected (blue) and preserves the
subnetwork of cortical regions and connections that share the greatest
connectivity loss due to the lesion (orange—red). Also note that patient
3's lesion is in the right hemisphere and that most of the nodes and
connections filtered from the disconnectome are in the left hemisphere
and that the preserved connections tend to cluster around the lesion.

3.6. Location effects

To further demonstrate the interplay between lesion location, the
maximum of the magnitude of the change in the total edge weight of
the subgraph, and koptimal, lesions of identical size are simulated in
multiple locations for single fiber populations and a crossing fiber po-
pulation in central and peripheral regions of the brain. The magnitude
of the change in total edge weight of the subgraph as it grows to k nodes
is plotted on the left in Fig. 8 for each lesion. The corresponding lesions
are plotted on the template brain on the right. ROI 1 (orange) and ROI 3
(brown) are both comprised of single population fibers while ROI 2
(red) contains multiple fiber populations. ROI 1 occurs centrally in the
poster limb of the internal capsule while ROI 2 and ROI 3 occur per-
ipherally near cortex. ROI 1 has the same profile as seen in the patients'
lesions in Fig. 4 while ROI 2 and ROI 3 do not rapidly rise or drop off in

Fig. 4. An algorithm to grow a maximal disconnection subgraph. On the left panel the average magnitude of the change in the total edge weight of the subgraph as it
grows in the number of nodes k from 210 HCP subjects. In both patients a clear concave disconnection growth profile emerges, where initially the magnitude of the
change grows rapidly until reaching the peak at koptimal. Patient 1 peaks at k= 27 (red cross) and patient 2 peaks at k=24 (blue cross). After the peak, the change in
total edge weight slowly drops off as additional nodes are added to the subgraph. In the middle panel, the reliability of koptimal is estimated. The standard deviation
(shaded) around the mean drops exponentially as the number of subjects increases. P1's deviation curve drops quicker than P2's. With 100 or more subjects the
sample mean converges with a standard deviation ≤1 of the koptimal estimated from 210 subjects. On the right the two patients normalized lesions are plotted on top
of the HCP template brain (with average FODs). While both patient's lesions are nearly identical in size and in the right hemisphere, the profile for the first patient
(red) peaks higher than the second blue) because their lesion extends across a more complex set of local diffusion directions where it intersects a larger number of
paths.

C. Greene, et al. NeuroImage: Clinical 23 (2019) 101903

6



the magnitude of the change in total edge weight. ROI 1 has a much
larger peak and koptimal. ROI 2 and ROI 3 both have much smaller peaks
and occur earlier.

3.7. Relation to clinical measures

As a simple demonstration of the potential utility of koptimal (the size
of the maximally disconnected subgraph) as a metric with clinical use,
we correlated it with several standardized assessments of eleven stroke
patients' clinical status on hospital admission. We tested both the NIH
Stroke Score (NIHSS), an overall measure of functional status and a
more specific measure, the patient's relative grip strength denoted as
the maximum grip strength of the paretic hand relative to the maximum
grip strength of the unaffected hand. As has been shown previously,
overall lesion size correlated with the patients' overall functional status
as measured by the NIHSS (Table 1). Similarly, koptimal showed a strong
and significant correlation with the overall functional status. The more
specific functional measure of relative grip strength, demonstrated no

correlation with lesion size, a well-known and intuitive result given that
very large lesions, while causing many global deficits can spare motor
function if the corticospinal tract is uninvolved whereas a very small
lesion of the internal capsule can lead to major motor deficits. Our
measure of maximally disconnected subgraph size captures this im-
portant distinction. We find that grip strength has a strong inverse
correlation (R=−0.62) with koptimal.

4. Discussion

We present a set of fast and accurate approaches for estimating the
overall connectivity loss matrix and maximally disconnected subgraph
using shortest path tractography in white matter voxel graphs. There
are multiple potential benefits of using a white matter voxel graph to
construct a connectivity matrix based on shortest paths compared to
streamline based measures. First, Dijkstra's shortest path algorithm is
guaranteed to find a path between voxels in different regions no matter
their spatial distance. Secondly, the paths connecting two regions are

Fig. 5. Maximally disconnected subnetworks plotted on top of the glass brain along with the corresponding maximal disconnection matrices. Region ROIs are plotted
as circles with the diameter reflecting the weighted degree of percent connectivity loss. The thicker the edge and the darker the color the greater the percent
connectivity loss between the connecting regions. Major connectivity loss was found amongst pairs of precentral, postcentral, brainstem, pallidum, and thalamus in
both patients (P1, P2). Most of the patients' identified disconnected regions are in the right hemisphere where the lesion occurred.

Fig. 6. The disconnected core network is found by intersecting the two maximally disconnected subgraphs of the two stroke patients. The core is primarily comprised
of brain regions in the right hemisphere involved in motor function with large percentages of connectivity loss amongst precentral, postcentral, superiorfrontal,
brainstem, thalamus, and pallidum. Edge weights were taken as the average between the two patients for a given edge. This overlap in sensorimotor circuits is
consistent with the fact that the patients were both selected because of similar clinical features of hemiparesis.
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weighted by the geometric means of the edge probabilities instead of
each being treated as equally likely as is typically done with streamline
counts. Consequently, shortest path estimations have high sensitivity
and can capture small reductions of connectivity between many pairs of
regions which is evident in Fig. 3, providing unique disconnection in-
formation even when lesions are similar in size and location. For con-
nectivity matrices constructed with streamline tractography, many re-
gion pairs that should be connected appear disconnected due to length
and crossing fiber effects that ultimately lead to premature streamline
termination and attempts to overcome this by growing more stream-
lines leads to many false connections or by dilating gray matter region
labels deeper into white matter leads to inaccurate streamline labelling.
Although weights can be generated for streamlines using approaches
such as SIFT2 or COMMIT for either pruning false streamlines or
creating weighted connectivity loss matrices, they do not address the
length and crossing fiber effects that lead to many disconnected region
pairs that should be connected (Smith et al., 2015 & Daducci et al.,
2015). Consequently, the accurate estimation of the true underlying

disconnectome or percent connectivity loss remains difficult with
streamline approaches. A disadvantage of our shortest path approach is
that it also contains many false positive connections as with streamline
tractography. However, it's guaranteed to contain all the true positive
connections as well which streamline approaches cannot guarantee.
Although not investigated here, the weights of each shortest path could
be used for pruning out false positive paths and approaches such as
COMMIT and LiFE could also be integrated for pruning false positive
paths (Daducci et al., 2015 & Pestilli et al., 2014). Moreover, shortest
path measures are computationally costly: calculating 2-billion+
shortest path connections between all voxels at the gray-white matter
interface per brain can be impractical. We therefore introduce a key
strategy to overcome this computational burden: subsets of interface
nodes are uniformly sampled at the gray-white interface. In the Ap-
pendix we show that the construction of shortest path probability
weighted structural networks can be estimated accurately and quickly
by only finding shortest paths from uniformly sampled sets of gray-
white interface voxels. The subsampled structural network has a
Pearson R-score of 0.99 with its full counterpart. With this, the task of
computing shortest paths decreases from ~24 h to minutes per subject.

With this accelerated estimate of shortest paths, it becomes practical
to derive weighted estimates of the % loss of connectivity across all
regions pairs when a patient's lesion is projected into a diffusion data
set obtained from a healthy brain at high spatial and angular resolution.
To make this robust at the population level, it is straightforward to take
the same lesion and project it into many normal diffusion data sets.
Here, we used 210 of the normal unrelated HCP adult subjects and find
that our results with them provide remarkably consistent and clinically
plausible maps of disconnection. A decided advantage of this approach
is that a weighted matrix of lost connections over the entire brain can
be readily generated for individual patients, without the need for a
lengthy and clinically impractical diffusion tensor scan from the same
patient. All that is needed is a reliable segmentation of the patient's

Fig. 7. The full connectivity loss matrix plotted on the glass brain in the top
panel. Many of the connections between cortical regions have a small loss in
connectivity (blue) with only a small subset having a large or complete con-
nectivity loss (orange—red). Our algorithm extracts the maximally dis-
connected subgraph filtering out connections and cortical regions with small
losses of connectivity. The set of connections and cortical regions experiencing
large shared connectivity losses are plotted in the bottom panel on the glass
brain. Most of these remaining connections are in the right hemisphere and
cluster around the lesion.

Fig. 8. The impact of lesion location on subgraph size, independent of lesion size. On the left the magnitude of the change in the total edge weight of the subgraph as
it grows in the number of nodes k is plotted for each simulated lesion. On the right, are the corresponding simulated lesion ROIs plotted on our HCP template brain.
All the ROIs are 74 voxels in size. ROI 1 has an identical profile to the curves in Fig. 4 from patients' lesions and peaks at k=18 (orange cross). ROI 2 and ROI 3 do
not rise rapidly but slowly drop off in total edge weight once they reach their peaks at k= 10 (red cross) and k=2 (brown cross) respectively. ROI 1 and ROI 3 are
comprised of single population fibers while ROI 2 is comprised of a crossing fiber population.

Table 1
Spearman correlation of disconnected subgraph size and lesion size to clinical
stroke measures. Lesion size and disconnected subgraph size show an identical
relation with initial NIHSS admission score. However, lesion size has no cor-
relation with relative grip strength while disconnected subgraph size shows a
strong inverse correlation of −0.62.

NIHSS admission Relative grip strength

R p-value R p-value

Lesion size 0.63 0.038 −0.009 0.98
Disconnected subgraph size 0.63 0.039 −0.62 0.040
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lesion, obtained from routine clinical MRI. It is important to note that
our approach is not suitable for patients if white matter reorganization
is suspected. Likewise, our approach is not suitable in longitudinal
studies.

A second major goal of our work was to develop an algorithm that
could consistently reduce the size of the overall connectivity loss matrix
because visualizing the full disconnectome is cumbersome and can be
difficult to interpret. Rather than a simple arbitrary threshold approach,
we developed an algorithm that quantifies the extent of the cortical
disconnection network and extracts the most disconnected set of con-
nections and cortical regions from the connectivity loss matrix, i.e., the
disconnectome input that share disconnectivity. This is illustrated in
Fig. 7 where the full disconnectome in the top panel containing a ma-
jority of connections with small losses in connectivity is entered into
our algorithm where primarily regions and connections experiencing a
large percent connectivity loss are extracted to form the maximally
disconnected subgraph in the bottom panel. To do this, we extended the
k-heaviest subgraph problem by defining an optimal number of nodes,
koptimal, to grow the heaviest subgraph. As shown in the results, the
growth profiles of the magnitude of the change in the weight of the
subgraph for each kth node that is added have concave shapes with
clearly defined maximums. We define the subgraph where the max-
imum occurs as the maximally disconnected subgraph. The maximally
disconnected subgraph is typically not a maximally disconnected clique
because our algorithm does not require every node to be adjacent. This
requirement is relaxed because enforcing every node to be a neighbor
inherently overrides the goal of extracting the heaviest subgraph be-
cause a clique of k nodes is not guaranteed to be the k-heaviest sub-
graph. koptimal can be robustly estimated from 100 or more subjects for
patients with a standard deviation ≤1. Here too, there is a significant
computational cost to estimating maximally disconnected subgraphs.
This motivated our introduction of a greedy algorithm to accelerate this
process. In the appendix, we demonstrate that our greedy algorithm
closely estimates the full approach (R=0.99).

Neurobiologically, the set of nodes in the disconnected subgraphs
up to koptimal share the cumulative greatest loss in connectivity due to
the lesion to each other. The maximally disconnected subgraph finds
the set of brain regions that are maximally disconnected from each
other due to a lesion. After koptimal, further nodes added do not share as
great of a connectivity loss due to the lesion to all the other regions
present in the disconnected subgraph. In our results, we focus the use of
our algorithm on individual patients, rather than large sample averages
to make it evident that our algorithm is specifically extracting just those
cortical regions and connections between them with a shared large
connectivity loss. Moreover, with the results from our simulated lesions
in Fig. 8 it becomes clear that the maximum number of nodes k can
change dramatically as a function of small shifts in lesion location,
independent of lesion size. This is governed by how many unique
connections pass through a given location and how many connections
for a given pair intersect it. Once a maximally disconnected subgraph is
generated, the impact on an individual patient can be readily visualized
and direct clinical correlation becomes feasible. For example, the dis-
connection subgraphs shown in Fig. 5 sit on top of known motor re-
gions: precentral, postcentral, brainstem, pallidum, and thalamus,
consistent with the primary clinical deficit in patients 1 and 2: uni-
lateral hemiparesis.

In parallel, disconnection subgraphs from many patients can be used
for correlation with clinical signs (as we demonstrate with grip strength
measures) or intersected to find common underlying structural ab-
normalities for a population with similar deficits. For example, the core
disconnection of motor regions and corticospinal tract shown in Fig. 6 is
not surprising given the selection of patients with hemiparesis. Al-
though koptimal correlates with the relative grip strength of stroke

patients while lesion size doesn't, koptimal is not specific to the motor
network. It is possible for patients to have a high koptimal without a grip
strength deficit. Because the subset of patients used in our study have
motor deficits, koptimal correlated with the relative grip strength. Con-
sequently, koptimal should only be used for correlation on patients with
similar deficits.

Most disconnection studies do not assume a linear association be-
tween the number of affected tracts and functioning, because the
number of tracts varies considerably as a function of the region pair size
and algorithmic parameters that may differ considerably between dif-
ferent analyses and thus yield highly variable results. Consequently, the
number of tracts is not a functionally meaningful metric. Instead, the
relative loss of tracts between pairs of regions or relative regional loss
or relative tract volume lost are assessed. For such relative estimates,
one may expect that higher percentages of connections lost due to in-
tersecting a larger lesion, will results in more severe functional im-
pairments with less remaining intact tracts being able to functionally
compensate for the white matter damage.

While the impact of discrete lesions on the connectivity of multiple
critical white matter pathways on complex behavior has been shown
previously, this has largely been accomplished by mapping local pre-
defined sets of white matter tracts with streamlines (Rusconi et al.,
2009). Preselection of tracts always introduces a bias and there is po-
tential to miss important disconnections that are outside of this pre-
defined search space that could be treatment targets.

Disconnection can also be quantified without preselecting sets of
tracts. However, prior studies that avoided preselection have had
marked methodological disadvantages. For example, Kuceyeski et al.,
2013 only quantified the percent disconnection at the region level
which doesn't elucidate what additional regions that region is dis-
connected from. Although Langen et al., 2018, measured the percentage
of disconnection at the region-to-region level, they used DTI and
tracked through lesioned tissue with distorted tensor orientations.
Consequently, the estimation of the disconnectome is less accurate
because of the inability to accurately track through regions with mul-
tiple fiber populations. Moreover, performing streamline tractography
on distorted diffusion information in lesioned tissue is known to accu-
mulate into large errors which accumulate into connectomes and con-
sequently disconnectomes (Greene et al., 2018).

In summary our method provides a fast, accurate, robust and un-
biased approach for studying the impact of lesions and location on the
entire connectome that does not rely on streamline tractography and
avoids tracking through lesioned white matter tissue. All that is re-
quired is a well segmented lesion. Moreover, it makes visualization and
clinical correlation of the disconnection tenable and feasible. Using the
provided methodology on a large dataset of behaviorally well-char-
acterized stroke patients in the future may help to further our func-
tional understanding of specific aspects of the structural connectome.
Similarly, our approach may help to identify aspects of connectivity
indicative of the potential for recovery on the level of individual pa-
tients to individualize therapy and improve outcome in stroke patients
in the future. Our software package for performing shortest path trac-
tography, constructing connectomes and disconnectomes, and finding
maximally disconnected subgraphs can be found online at http://
github.com/clintg6/ShortestPathTools.
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Appendix A. Validation data

A.1. Subsampling validation

In Fig. 9, Connectivity loss matrices estimated from shortest paths found for the full set of combinations of interface voxel pairs are plotted in the
left column for two patients. On the right connectivity loss matrices estimated from shortest paths found for only a subsampled set of combinations of
interface voxel pairs are plotted. The matrices in the left and right columns are virtually indistinguishable for both patients. The Spearman cor-
relation coefficient for both patients between the full and subsample connectivity loss matrices is 0.99.

Fig. 9. On the left connectivity loss matrices estimated from shortest paths found for the full set of combinations of interface voxel pairs for two patients. On the right
are connectivity loss matrices estimated from shortest paths found for only a subsampled set of interface voxel pairs. The matrices in the left and right columns are
virtually indistinguishable from each other in the same patient. The Spearman correlation between the full and subsampled connectivity loss matrices for both
patients is 0.99.

In Fig. 10, the profiles for the change in the weight of the k-heaviest subgraph at each iteration of k are plotted for both patients from full and
subsampled constructed connectivity matrices. The full and subsampled profiles in each patient have a concave structure and are again virtually
indistinguishable. In both patients, the full and subsampled profiles have a Spearman correlation coefficient of 0.99. Both sets of profiles for both
patients peak at the same koptimal.

Fig. 10. Change in the weight of the k-heaviest subgraph at each iteration of k. profiles are plotted for both patients from full and subsampled constructed con-
nectivity matrices. The full and subsampled profiles in each patient have a concave structure and are again virtually indistinguishable from each other. In both
patients, the full and subsampled profiles have a Spearman correlation coefficient of 0.99 and peak at the same koptimal.

A.2. Greedy algorithm validation

To measure the performance of our greedy algorithm compared to the exact solution, the weight of the subgraph is plotted for each iteration of k
up to k=15 for the greedy and exact solutions from connectivity loss matrices from three patients' stroke lesions in Fig. 11 on the left. The solutions
agree excellently with a Spearman R-score of 0.99. Patient 3 (red) weights do not reach as large of a weight at k=15 compared to Patient 4 (green)
and Patient 5 (blue). Patient 3's lesion is only 132 voxels compared to the large lesions of Patient 4's at 8498 voxels and Patient 5's at 5624 voxels.
The agreement between the solutions is also seen in the middle plot for the change in the weight of the subgraph for each node k added to the
subgraph. Again Patient 4's and Patient 5's change in weight curves grow larger for each node added due to larger lesion size compared to Patient 3's.
On the right in Fig. 11, the dice overlap between the nodes making up the exact heaviest subgraph of k nodes and the greedy heaviest subgraph (Dice,
1945). At k=15, Patient's 3 & 4 both have a dice overlap of 1.0 i.e. perfect agreement between the exact solution and greedy solution. For Patient 5,
the dice overlap is 0.87. As k increases, the dice overlap grows. This suggests that there is minor disagreement initially about which node to add but
the greedy solution converges as k increases to the exact solution.
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Fig. 11. On the left the weight of the subgraph for each iteration of k up to k=15 is plotted for the greedy solution and the exact solution for three stroke patients.
Patient 3 (red) weights do not reach as large of a weight at k=15 compared to Patient 4 (green) and Patient 5 (blue). Patient 3's lesion is only 132 voxels compared
to the large lesions of Patient 4's at 8498 voxels and Patient 5's at 5624 voxels. Unity dashes line is in gray. The change in the total edge weight of the subgraph as it
grows in the number of nodes k for our greedy approach and exact solution grows larger for larger lesions Patient's 4 & 5 compared to small lesions like with Patient 3.
The dice overlap for the set of nodes from the exact subgraph and our greedy subgraph for each iteration of k is plotted on the right. Initially, the agreement is poor
but as k increases the agreement is excellent. The dice overlap for Patient 3 and Patient 4 is 1.0 at k=15 and 0.87 for Patient 5.
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