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A B S T R A C T

A multivariate analytical strategy may pinpoint the structural connectivity patterns associated with Alzheimer's
disease (AD) pathology in connectome-wide association studies. Diffusion magnetic resonance imaging data from
161 participants including subjects with healthy controls, AD, stable and converting mild cognitive impairment, were
selected for group-wise comparisons. A multivariate distance matrix regression (MDMR) analysis was performed to
detect abnormality in brain structural network along with disease progression. Based on the seed regions returned by
the MDMR analysis, supervised learning was applied to evaluate the disease predictive performance. Nine brain
regions, including the left orbital part of superior and middle frontal gyrus, the bilateral supplementary motor area,
the bilateral insula, the left hippocampus, the left putamen, and the left thalamus demonstrated extremely significant
structural pattern changes along with the progression of AD. The disease classification was more efficient when based
on the key connectivity related to these seed regions than when based on whole-brain structural connectivity. MDMR
analysis reveals brain network reorganization caused by AD pathology. The key structural connectivity detected in
this study exhibits promising distinguishing capability to predict prodromal AD patients.

1. Introduction

Alzheimer's disease (AD) is a leading cause of dementia, causing
progressive loss of memory and cognition and affecting 46.8 million
people globally (Wu et al., 2017). The amyloid cascade hypothesis
(Hardy, 2006; Hardy and Higgins, 1992), one of the most prevalent
explanations for AD pathological mechanism, proposes that the accu-
mulation of amyloid-β peptides leads to neurofibrillary tangles and
neuron loss. Since these pathological hallmarks can appear years before
the onset of evident symptoms, it is now accepted that therapeutic in-
terventions targeted at the preclinical or prodromal stage of AD may
delay the disease progression (Bakker et al., 2015). Mild cognitive
impairment (MCI) has been widely considered as a prodromal phase of

AD, with an annual conversion rate to AD of about 8–15% (Mitchell and
Shiri-Feshki, 2009; Ritter et al., 2015). Various neuroimaging techni-
ques allow more accurate prediction of this conversion, indicating a
great potential to evaluate AD risk at an early stage (Eskildsen et al.,
2013; Liu et al., 2013; Pereira et al., 2017; Westman et al., 2011).

Unfortunately, extensive treatment strategies to removing or modify
amyloid-β peptides have failed to restore the cognition of AD patients
(Canter et al., 2016; Hyman et al., 2012), thus motivating researchers to
explore new pathological mechanisms besides the amyloid cascade
hypothesis. A growing understanding of neural circuit dysfunction in
AD suggests that long-range network dysfunction plays a key role in
memory loss and cognition impairment in AD patients (Canter et al.,
2016; Mattson, 2004). Similar to converging evidence demonstrating
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the vulnerability of brain functional connectivity in AD using functional
magnetic resonance imaging (fMRI) (Damoiseaux et al., 2012; Greicius
et al., 2004; Griffanti et al., 2015), the brain white matter (WM)
structural connectivity was also found largely disrupted in AD patients
(Lo et al., 2010), such as superior longitudinal fasciculus (Xie et al.,
2006), splenium of the corpus callosum (Ukmar et al., 2008) and cin-
gulum (Fellgiebel et al., 2008). Additionally, tractography technique on
diffusion MR images enables researchers to investigate individual brain
structural network in vivo (Mori et al., 2009). Given that many of these
studies focusing on brain structural networks have utilized seed-based
or network-based approaches with nodes defined a priori, we aim to
perform connectome-wide association (CWAS) studies in a data-driven
manner, to avoid potentially biased assumptions in understanding of
how the underlying neuroanatomy is altered due to AD.

An intuitive analytical approach in data-driven CWAS studies is mass
univariate testing on an individual basis. However, this approach may
not offer sufficient statistical power when every connection comprising
the network is tested independently (Zalesky et al., 2010). When re-
search of interests is associated with global network properties, two main
strategies in CWAS studies have been proposed to quantify structural
networks as a continuum: dimensionality reduction and graph analysis.
In the first, key components can be selected from an individual network
matrix by different approaches, including principle component analysis
(Zhan et al., 2015) and matrix factorization (Ball et al., 2017), so that the
weights of components can be discriminated across groups. In the
second, high-level graph metrics, such as small-world, nodal degree, and
clustering coefficient, can be derived (Alexander-Bloch et al., 2013).
Previous tractography studies using graph theory have reported ab-
normalities among MCI and AD populations in several brain areas, in-
cluding the frontal (He et al., 2009; Lo et al., 2010), temporal (Fischer
et al., 2015), and posterior-medial parietal cortices (Hagmann et al.,
2008). While both strategies have reported abnormalities in structural
networks in AD (Lo et al., 2010), they cannot adequately reflect the
underlying neuroanatomy (Bullmore and Sporns, 2009). In particular,
dimensionality reduction approaches are not fully exploratory because
substantial information is lost by data reduction, and graph metrics are
not specific to any one graph (e.g. different graphs can have identical
network centrality). In contrast, exploratory multivariate analysis can
complement graph theory for more detailed characterization of con-
nectome variations without sacrificing connectome dimension, thus
showing more promising for discovering the substrate of the specific
structural connectivity patterns associated with AD pathology.

In this study, we sought to examine the unique pattern alterations in
WM structural connectivity networks during the progression of AD.
Multivariate distance matrix regression (MDMR) proposed by (Shehzad
et al., 2014) allows exploring connectivity-phenotype relationships
without any a priori information or parameter selection. This data-
driven statistical approach has been recently employed to examine the
overall pattern of functional or grey matter structural connectivity as-
sociated with various clinical phenotypes, such as anhedonia (Sharma
et al., 2017), psychosis-spectrum symptoms (Satterthwaite et al., 2015),
and AD (Rasero et al., 2017b). Inspired by this statistical framework, we
applied MDMR to compare WM structural connectivity patterns among
cognitively normal (CN) subjects, stable MCI (sMCI), MCI converting to
AD (cMCI) patients, and AD patients. The connectome reorganization in
AD progression (especially in early phase) identified by MDMR may
allow for effective risk prediction of AD, as well as aid clinicians to
develop a precise intervention for disconnected neural circuits.

2. Materials and methods

2.1. Study cohort

The current study obtained MR images from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database, where participants were re-
cruited from over 50 institutions across U.S. and Canada. Currently,

around 1500 adults have been recruited in different ADNI initiatives,
ages 55 to 90 years. The follow-up duration for all participants is spe-
cified in the protocols for ADNI-1, ADNI-2 and ADNI-GO (further in-
formation in www.adni-info.org).

In this cross-sectional study, we select subjects according to the
label that is available for each subject for most of the visits: CN (cog-
nitively normal), MCI and dementia from ADNI-2 dataset. After the
initial search from ADNIMerge file (http://adni.loni.usc.edu/wp-
content/themes/freshnews-dev-v2/documents/bio/inst_adni_merge.
pdf), 243 subjects with both 3 T MR axial DTI scans and T1 weighted
(T1W) images are available. Then 29 subjects were excluded for a non-
monotone diagnosis, for example converting from MCI to dementia to
MCI again. 38 subjects were further excluded for those where the last
visit has no diagnosis available, as these subjects are considered unclear
to belong to either the cMCI or the sMCI group. 15 subjects were re-
moved for high levels of MR artifacts due to head-motion or magnetic
susceptibility distortion. Explicitly, the failed quality measures due to
head-motion were detected using an automated inspection tool DTIprep
(Oguz et al., 2014), and subjects with extreme distortion in regions like
prefrontal lobe and inferior temporal areas on b0 images by visualiza-
tion were considered to meet exclusion criteria. A final subject sample
of 161 participants was analyzed, including three groups that were
matched for age and sex: 46 in CN, 48 in sMCI, 27 in cMCI, and 40 in
AD. All participants had provided informed written consent before re-
cruitment and filled out questionnaires approved by the respective In-
stitutional Review Board (IRB).

2.2. Image acquisition, pre-processing and tractography

MR scanning of all subjects in this study followed the ADNI acquisition
protocol (http://adni.loni.usc.edu/methods/documents/mri-protocols).
Diffusion weighted images from axial DTI scans and T1 weighted (T1W)
images from sagittal inversion recovery-prepared spoiled gradient-echo
scans were collected. DTI images were acquired with the following para-
meters: 59 slices with thickness of 2.7mm with no gap between slices,
repetition time/echo time=9 s/60ms, 256×256 matrix with a field of
view of 35 cm, and flip angle=90. Forty-one diffusion weighted images
(b=1000 s/mm2) with noncollinear directions and one volume without
diffusion weighting (b=0 s/mm2) were obtained.

Pre-processing of diffusion weighted images included image de-
noising (Veraart et al., 2016), head-motion and eddy-current correction
(Andersson and Sotiropoulos, 2016), and field inhomogeneity correction
(Tustison et al., 2010). All pre-processing steps were performed within
MRtrix3 (www.mrtrix.org), which included scripts that interfaced with
external packages such as the FSL (https://fsl.fmrib.ox.ac.uk) (Jenkinson
et al., 2012). After pre-processing, 4D diffusion weighted images were
applied to estimate the diffusion tensor model for each voxel by a
probabilistic fiber tracking algorithm (Jones, 2008). Specifically, 10,000
seeds were randomly distributed with a brain mask with fractional ani-
sotropy (FA) values>0.1, and streamlines that were tracked with a step
size of 0.1×voxel size along the orientation of the principle eigenvector
of the fitted tensor from each seed were terminated by the default con-
figuration in MRtrix3 (curvature threshold=0.02, 2000 steps max-
imum). It has been well recognized that deterministic tractography (Mori
and van Zijl, 2002) and probabilistic tractography (Jones, 2008) are two
prevalent and robust approaches for DTI fiber tracking in the scientific
community. The probabilistic approach was used here because it shows
higher anatomical reproducibility than the deterministic approach in
terms of connectivity calculation (Bonilha et al., 2015).

2.3. Definition of WM structural networks

Following the tractography steps, we co-registered the FA images
derived from the 4D diffusion weighted images to their corresponding
T1W images by affine transformation. Based on the next non-linear
registration from native T1W images to the ICBM152 template, we

C. Ye, et al. NeuroImage: Clinical 22 (2019) 101690

2

http://www.adni-info.org
http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/bio/inst_adni_merge.pdf
http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/bio/inst_adni_merge.pdf
http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/bio/inst_adni_merge.pdf
http://adni.loni.usc.edu/methods/documents/mri-protocols
http://www.mrtrix.org
https://fsl.fmrib.ox.ac.uk


obtained an inverse warping transformation from the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) to the
native DTI space. Therefore 90 brain regions not including the cere-
bellum were defined as WM structural network nodes, following the
labels of the AAL atlas.

The construction of edges within a structural network, namely the
brain WM connectivity, depends on the tractography performed before
(Hagmann et al., 2008). A 5% density threshold was applied to retain
the strong edge (95th percentile) weights for the connectivity matrix of
each subject. We further defined the edge weight by the number of
connections per unit surface between the end-nodes using a correction
term of edge length, as first introduced by (Hagmann et al., 2008).
Here, the strength of structural connectivity is better represented as the
probability of a given brain region to be connected with another, rather
than the strength of the underlying physiological WM fibers in neuronal
pathways. In this way, a 90× 90 symmetric connectivity matrix was
obtained for each subject.

2.4. Multivariate distance matrix regression

To more comprehensively characterize the altered connectivity
pattern caused by AD, advanced statistical methods should be applied.
Recently, the multivariate distance matrix regression proposed by
(Shehzad et al., 2014) shed light on this limitation by a comprehensive
survey of connectome-behaviour relationships on a group level. In brief,
the connectivity patterns between subjects, rather than individual local
connections, were modeled as a marker of disease progression. We
describe MDMR implementation in detail below.

We applied MDMR to test the variation of distance in connectivity
patterns between groups. First, a distance matrix in the subject space
was calculated for each region. Within each distance matrix, the dis-
tance between connectivity patterns for every possible subject pair

among all groups related to region i was calculated by

=d 2(1 r )uv
i
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where ruv is the Pearson correlation coefficient between connectivity
vectors of subject u and v. Here the connectivity vector of one subject
refers to the connection of the given brain region to the rest 89 regions.
Next, we performed MDMR to yield a pseudo-F estimator for the cross-
group analysis, by measuring the significance of between-group varia-
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where n1and n2 denote the number of the first and second group re-
spectively, εuva equals 1 if subjects u and v belong to the first group and
zero otherwise, and similarly εuvb equals 1 if subjects u and v belong to
the second group and zero otherwise. Given the between-group varia-
tion denoted by SSAi= SSTi− SSWi, we could calculate the pseudo-F
statistic by

=F n SS
SS

( 1)i A
i

W
i

By randomly shuffling the subject indices, a p value was calculated
by counting the pseudo-F statistics from permutated values greater than
those derived from the original data. Age, sex and APOE-4 level were
incorporated in this model as covariates. Finally, the same procedure
was repeated for i=1, 2, ∙ ∙ ∙ , 90 brain regions defined in the AAL atlas.

Fig. 1. Schematic flowchart of multivariate distance matrix regression analysis based on tractography of diffusion tensor images and parcellation of 3D T1-weighted
(T1W) images. DWI: Diffusion weighted imaging; AAL, automated anatomical labeling; FDR, false discovery rate.
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The false discovery rate correction was applied to control for type I
errors due to 90 comparisons. The workflow of MDMR analysis is
shown in Fig. 1. We performed MDMR for both the two-group (CN vs.
sMCI, CN vs. cMCI and CN vs. AD) and three-group (CN, cMCI and AD)
comparisons.

2.5. Post-hoc analysis

While the overall connectivity pattern of a single node of the whole-
brain network associated with AD progression can be identified by MDMR,
it is often a substantive interest to describe which specific connectivity
pattern is primarily driving this association. Recently the δ statistic was
proposed to measure the univariate effect size on a particular response
variable by a randomization procedure [see (McArtor et al., 2017) for
details]. For the post-hoc analysis, we used this statistic to identify the top
five connected network nodes with the greatest effect size for each seed
region returned by MDMR on the three-group comparison and examined
the alteration in the connectivity pattern in those five pairwise connections
for each seed region. Note that this post-hoc analysis subsequent to MDMR
was conducted descriptively, as the seed regions were selected based on
the significance (p < .001) from the MDMR results.

2.6. Group-wise comparison of the overall connectivity strength

To examine whether the amplitude of the structural connectivity
related to local regions was altered, we compared the overall con-
nectivity strength of each node, i.e., the sum of the absolute value over
all entries of the connectivity matrix for each individual, from the same
seed regions returned by MDMR analysis. A general linear model was
employed to compare the overall connectivity strength between groups,
using the same covariates as those listed above in MDMR analysis. A
post-hoc permutation test was further performed to evaluate the dif-
ference between each two-group pairs. A p-value of 0.05 was set as the
threshold to determine significance.

2.7. Classification based on structural connectivity

In order to measure the predictive performance of the key structural
connectivity revealed by MDMR and post-hoc analysis, we further use a
supervised learning algorithm to predict the cMCI and AD patients based
on all the connectivity features with the greatest effect size. Partial least
squares discrimination analysis (PLS-DA) was selected as the classifier here
to reduce chances of overfitting. PLS-DA is the least restrictive extension of
the multiple linear regression model, thus can increase the potential for
generalization of the results and be of direct importance for clinical gui-
dance. Our subject samples were randomly divided into training set

(n=129) and test set (n=32). To reduce the variability in the classifi-
cation results from the random partition of the subject samples, we re-
peated this procedure for five times. The structural connectivity with the
greatest effect size in the post-hoc analysis based on the training set were
selected as features for learning. The initial hyperparameters were de-
termined using default settings in R's caret package, and then model tuning
was performed to construct the final model. We performed binary classi-
fication for the two-group pairs (i.e. CN vs. cMCI, CN vs. AD) and five-fold
cross validation within the training set to ensure generalization.
Additionally, we tested the predictive performance of the full connectivity
of the brain (90×89/2=4005 pairs) for comparison, with statistical
inferential assessments of model performance using diff.resamples function
in R's caret package (Hothorn et al., 2005). The classification performance
was evaluated by sensitivity, specificity, and Receiver Operating Char-
acteristic (ROC) curve on the test set, and Area Under Curve (AUC) of ROC
was also calculated. All statistical analyses and classifications in our study
were performed in R (https://www.r-project.org).

3. Results

3.1. Demographic and clinical information

Table 1 shows the demographic and clinical characteristics for CN,
sMCI, cMCI, and AD subjects. No significant differences in age
(p= .62), sex (p= .31), or education (p= .20) were present among
subject groups. Montreal Cognitive Assessment (MoCa) scales, Rey
Auditory Verbal Learning Test (RAVLT) scales and Everyday Cognition
in different domains, which are cognitive functions questionnaire filled
out by patients (EcogPt) significantly decreased from CN to MCI stage
to AD stage (p≤ 0.001). Cerebrospinal fluid biomarkers including
Aβ1–42 and tau level at baseline, as well as ApoE-4 genetic phenotypes
also showed significant variations among the four subject groups.

3.2. Brain regions with altered connectivity

The results returned by MDMR analysis are included in Table 2. In
brief, only one brain region (i.e. the right medial orbital part of superior
frontal gyrus) was observed with significant difference in terms of
connectivity patterns between the CN and sMCI groups. 13 brain re-
gions mainly including frontal, temporal lobes, limbic areas and basal
ganglia structures were observed with significantly different con-
nectivity patterns between the CN and cMCI groups. As the disease
progressed, significantly different connectivity patterns were found in
33 brain regions between the CN and AD group. The full names of all
AAL brain region abbreviation are listed in Supplemental Table S1.

Table 1
Demographic and clinical information across groups.

Characteristic CN (n=46) sMCI (n= 48) cMCI (n= 27) AD (n= 40) Statistic P value

Age (y) 74.5 ± 5.9 74.5 ± 8.4 76.5 ± 7.3 74.6 ± 7.7 0.62a 0.60
Sex (F|M) 24|22 18|30 11|16 17|23 3.60b 0.31
Education (y) 16.5 ± 2.8 15.8 ± 2.8 15.9 ± 2.6 15.2 ± 2.8 1.57a 0.20
MoCa score 26.2 ± 2.4 23.7 ± 2.7 21.4 ± 3.6 15.9 ± 5.1 68.76a <0.001
RAVLT immediate recall score 45.3 ± 10.9 34.5 ± 8.8 28.3 ± 7.1 20.2 ± 7.0 63.59a <0.001
EcogPt language 1.4 ± 0.4 1.9 ± 1.7 1.8 ± 0.6 1.9 ± 0.8 6.70a <0.001
EcogPt visuospatial abilities 1.2 ± 0.4 1.4 ± 0.6 1.6 ± 0.7 1.9 ± 0.8 10.06a <0.001
EcogPt planning 1.2 ± 0.4 1.4 ± 0.5 1.5 ± 0.6 1.9 ± 0.9 9.35a <0.001
EcogPt divided attention 1.5 ± 0.5 1.9 ± 0.8 2.0 ± 0.8 2.1 ± 0.9 5.66b 0.001
ApoE-4 carriers (%) 0% 16.7% 22.2% 15% 23.91b <0.001
Baseline Aβ1–42 (pg/ml) 211.0 ± 51.5 171.0 ± 54.6 148.0 ± 32.5 131.0 ± 33.6 17.90a <0.001
Baseline tau (pg/ml) 62.0 ± 25.0 90.9 ± 58.6 115.0 ± 61.2 133.0 ± 55.1 10.70a <0.001

CN: cognitively normal; sMCI, stable MCI; cMCI, converted mild cognitive impairment; AD, Alzheimer's disease; F, female; M, male; MoCa, Montreal Cognitive
Assessment.

a F statistic obtained by using one-way analysis of variance.
b χ2 statistic obtained using the χ2 test.
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3.3. Connectivity patterns for seed regions

From the three-group comparisons based on MDMR analysis, nine
seed regions showed significant structural pattern changes were
adopted as seed regions for further analysis, including the left orbital
part of superior and middle frontal gyrus, the bilateral supplementary
motor area, the bilateral insula, the left hippocampus, the left putamen,
and the left thalamus (p < .001, Supplemental Table S2). The com-
prehensive connectivity patterns for all seed regions identified from the
post-hoc analysis are qualitatively demonstrated in Fig. 2 using BrainNet
Viewer toolkit (Xia et al., 2013). All network nodes defined in AAL are
shown, where some seed regions are represented in red and others in
blue. The edges with top five greatest connectivity strength for each
seed region are displayed in black. We further applied radar charts to
quantitatively characterize the connectivity patterns for those seed re-
gions (Fig. 3), with the axes representing the connectivity strength with
great effect size. The progressive decline of single structural con-
nectivity strength along with the progression of AD was observed par-
ticularly in pairs between the left putamen and the left orbital part of
middle frontal gyrus and pairs between the left hippocampus and
middle temporal pole. Although the areas within the pentagon in the
radar chart for the CN group appeared generally larger than in the AD
and cMCI groups, the shapes at different disease stages evolved

irregularly, especially for connectivity patterns relating to the left
thalamus. When comparing the overall connectivity strength of the nine
seed regions between groups, we found four regions showing sig-
nificantly decreased amplitude in patient groups, including the left
orbital part of superior frontal gyrus (p= .008 for cMCI vs. CN; Fig. 4),
the left orbital part of middle frontal gyrus (p < .001 for AD vs. CN and
cMCI vs. CN; Fig. 4), the left supplementary motor area (p= .007 for
AD vs. CN, and p= .023 for cMCI vs. CN; Fig. 4) and the right sup-
plementary motor area (p= .015 for AD vs. CN, and p= .032 for cMCI
vs. CN; Fig. 4).

3.4. Classification performance

The two-group PLS-DA classification performance based on the
structural connectivity (CN vs. cMCI and CN vs. AD) is demonstrated in
Table 3. In brief, the prediction of cMCI individuals from the CN group
exhibited the most accurate performance (AUC=0.862 for key struc-
tural connectivity) among all combinations. Furthermore, the predic-
tion of cMCI individuals from the CN group based on the key structural
connectivity returned from MDMR analysis achieved significantly
better performance than the full structural connectivity in the whole
brain (p= .045 for sensitivity and p= .042 for AUC).

Table 2
Brain regions with significantly altered connectivity patterns returned from two-group MDMR analysis.

Brain regions CN vs. sMCI CN vs. cMCI CN vs. AD

Pseudo-F statistic p value (FDR corrected) Pseudo-F statistic p value (FDR corrected) Pseudo-F statistic p value (FDR corrected)

PreCG.R 1.663 0.293 1.644 0.235 2.159 0.040⁎

ORBsup.L 2.522 0.113 2.373 0.078 2.551 0.023⁎

ORBmid.L 3.677 0.054 3.629 0.048⁎ 3.360 0.015⁎

IFGtriang.R 1.669 0.323 2.014 0.160 2.502 0.040⁎

ORBinf.L 1.555 0.373 4.034 0.045⁎ 3.384 0.008⁎⁎

ROL.R 1.531 0.424 3.489 0.048⁎ 3.748 0.012⁎

SMA.L 3.711 0.135 4.853 0.048⁎ 9.149 < 0.001⁎⁎⁎

SMA.R 4.275 0.054 6.184 0.030⁎ 8.474 < 0.001⁎⁎⁎

ORBsm.R 3.789 < 0.001⁎⁎⁎ 1.144 0.458 3.086 0.026⁎

INS.L 1.832 0.219 2.153 0.078 3.986 <0.001⁎⁎⁎

INS.R 1.695 0.251 2.714 0.048⁎ 3.584 < 0.001⁎⁎⁎

ACG.R 1.698 0.282 1.267 0.432 2.167 0.049⁎

DCG.R 2.269 0.219 2.826 0.078 2.470 0.046⁎

PCG.L 1.252 0.434 0.507 0.938 2.503 0.042⁎

PCG.R 1.384 0.424 0.910 0.677 2.528 0.040⁎

HIP.L 1.614 0.323 1.804 0.186 4.476 <0.001⁎⁎⁎

HIP.R 1.363 0.424 4.180 0.048⁎ 2.674 0.056
PHG.L 1.869 0.238 1.982 0.133 2.211 0.037⁎

CAL.L 1.170 0.462 1.310 0.374 2.392 0.040⁎

CUN.L 0.803 0.749 1.181 0.432 3.920 0.008⁎⁎

SOG.L 1.553 0.323 2.379 0.078 2.240 0.048⁎

SOG.R 1.584 0.373 2.154 0.118 2.720 0.019⁎

IOG.L 2.064 0.201 1.481 0.304 2.222 0.046⁎

FFG.R 1.746 0.312 1.865 0.204 2.387 0.046⁎

SPG.R 1.227 0.434 2.425 0.078 2.704 0.015⁎

PCUN.L 0.716 0.789 1.710 0.243 4.054 0.008⁎⁎

PCUN.R 0.872 0.690 3.039 0.056 3.007 0.012⁎

CAU.R 1.894 0.294 4.228 0.030⁎ 2.085 0.095
PUT.L 1.612 0.282 2.937 0.030⁎ 2.669 0.012⁎

PUT.R 1.398 0.383 2.334 0.048⁎ 2.071 0.066
PAL.L 1.450 0.323 2.091 0.048⁎ 1.574 0.116
THA.L 2.267 0.219 2.176 0.118 4.752 < 0.001⁎⁎⁎

THA.R 1.678 0.312 1.863 0.230 4.887 0.012⁎

STG.R 1.278 0.434 2.963 0.048⁎ 2.379 0.039⁎

TPOsup.L 1.886 0.251 2.492 0.048⁎ 2.478 0.015⁎

TPOmid.L 1.969 0.195 1.681 0.204 3.251 <0.001⁎⁎⁎

TPOmid.R 1.206 0.453 1.868 0.133 2.922 <0.001⁎⁎⁎

CN: cognitively normal; sMCI, stable MCI; cMCI, converted mild cognitive impairment; AD, Alzheimer's disease; MDMR, multivariate distance matrix regression;
FDR, false discovery rate; L, left; R, right.

⁎ p < .05.
⁎⁎ p < .01.
⁎⁎⁎ p < .001.
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4. Discussion

This study aimed to identify pattern changes in brain structural
connectivity caused by AD pathology. For this purpose, we employed
DTI tractography to establish individual-based connectivity networks in
CN, sMCI, cMCI, and AD groups and applied MDMR with post-hoc
analysis to detect network abnormalities between different phases of
disease severity in a comprehensive way. The multi-variate data-driven
analytical framework employed in this study included no a priori
knowledge for seed nodes, while demonstrated capability to efficiently
detect the local connection that mostly contributing to the abnormal
topology of the brain network. This approach improves our under-
standing of the association between brain structural connectivity and
AD progression in several ways: 1) extensive disruption of structural
connectivity occurs in both prodromal and clinical stage of AD; 2) de-
spite the contribution of amplitude changes, the connectivity pattern
alteration implies potential roles for the complex circuit dysfunction
underlying AD pathophysiology; and 3) several key structural disrupted
connections demonstrate a promising distinguishing capability for
predicting MCI individual converting to AD. Taken together, these
findings delineate the extensive reorganization of brain structural
connectivity across clinical diagnostic categories.

Detecting abnormal connectivity patterns of structural brain net-
works is a central aim of MDMR analysis. We first revealed abnormal-
ities during the conversion from CN to cMCI stage in 13 brain regions
encompassing the default mode network (DMN), including the superior
temporal pole and hippocampus; the sensory-motor network, including
supplementary motor areas; the orbitofrontal cortex, the insula, and the
striatum. Our findings are consistent with the reported dysregulation of
multiple functional networks in prodromal and clinical AD patients
using fMRI techniques (Badhwar et al., 2017). Given that a strong
correlation between structural and functional connectivity has been
recently verified in brain networks, including the DMN, the identified
structural disconnection revealed by MDMR analysis may reflect the
underlying connectivity changes induced by functional disorders. In
contrast to these 13 regions showing significant network pattern dif-
ference between cMCI and CN groups, only one region with significant
difference was observed between sMCI and CN groups, indicating po-
tential to distinguish different disease trajectories in early stage. Ad-
ditionally, the disconnection pattern was more extensive between CN
and AD subjects, highlighting the remarkable disruption of structural

networks in the clinical stage of AD. The identified 33 regions, widely
distributed in frontal, temporal, occipital, and limbic areas, with sig-
nificant connectivity differences between CN and AD subjects, are lar-
gely consistent with those reported in a number of previous studies
(Daianu et al., 2013; Lo et al., 2010; Wee et al., 2011). We speculate
that these disconnection patterns may explain the worsening of several
cognitive functions, including episodic memory (Tromp et al., 2015),
verbal fluency (Mueller et al., 2015), executive functions (Allain et al.,
2013), visuospatial skills (Vlcek and Laczo, 2014), and attention
(Backman et al., 2005), which are reflected in RAVLT and EcogPt scales
in Table 1.

The follow-up analysis subsequent to MDMR explicitly described
which specific patterns of structural connectivity were responsible for
the significant results. Notably, we found that the intrinsic connectivity
patterns among the nine seed regions with structural connectivity al-
terations vary differently as AD pathology progresses. For the bilateral
supplementary motor area and left insula, the major pattern changes
caused by AD were reflected as a progressive connectivity decline along
with some specific axes in the radar chart, while the connectivity
strength along with other axes generally remained integral. In parti-
cular, the connectivity between the bilateral supplementary motor area
in cMCI and AD subjects exhibited reduced strength, consistent with the
overall connectivity decline. The overlapping connectivity abnormal-
ities between amplitude and pattern analysis is mainly associated with
the well-known impairment of movement blindness (Buchman and
Bennett, 2011). Moreover, this finding may reflect the impaired un-
derlying commissural fibers in AD progression, as supported by nu-
merous DTI studies focusing on the disrupted integrity of the corpus
callosum in MCI and AD patients (Preti et al., 2012; Preti et al., 2011;
van Bruggen et al., 2012). The remarkable connectivity reduction be-
tween the insula and the orbital part of inferior frontal gyrus in the left
hemisphere is congruent with previous studies reporting that the in-
sular cortex undergoes substantial pathological changes in AD
(Bonthius et al., 2005; Foundas et al., 1997; Rombouts et al., 2000).
Since the insula plays a key role in multiple regulatory mechanisms, its
disconnection could be associated with autonomic dysfunction, which
could trigger the leading causes of death in AD patients, including
cardiac failure and bronchopneumonia (Bonthius et al., 2005). Fur-
thermore, the frontoinsular cortex, as one of the integral hubs in the
salience network, is involved in attentional processing and cognitive
control (Marusak et al., 2015). Thus, the observed disconnection

Fig. 2. Comprehensive connectivity patterns for all seed regions identified by the post-hoc analysis. All network nodes defined in the Automated Anatomical Labeling
atlas are shown, where some seed regions are represented in red and others in blue. The edges with top five greatest connectivity strength for each seed region are
displayed in black. ORBsup: orbital part of superior frontal gyrus; ORBmid: orbital part of middle frontal gyrus; SMA: supplementary motor area; INS: insula; HIP:
hippocampus; PUT: putamen; THA: thalamus; L, left; R, right.
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between the left insula and the inferior frontal gyrus provides more
evidence to the theory that the structural impairment of the salience
network emerges in AD progression (He et al., 2014).

We also found similarly diminished connectivity between the left
hippocampal formation and temporal pole. The connected brain regions
with the greatest effect size contributing to pattern alterations along
with AD progression were basically areas strongly connected to the
hippocampus anatomically, including limbic (amygdala, para-
hippocampus, fusiform) and paralimbic structures (temporal pole).
Regions distributed in the limbic-temporal module were also reported
to show altered structural connectivity in both late MCI and AD patients
(Rasero et al., 2017a). Considerable reductions in metabolic glucose
(Nestor et al., 2003) and functional connectivity (Wang et al., 2007) in
limbic-temporal regions also supports the reduced structural con-
nectivity found between the left hippocampus and the temporal pole.
While the mechanism underlying the occurrence of both decreased
connectivity and the paradoxical slight increase within the limbic

network, e.g. in the hippocampal-thalamic connectivity, remains an
open question, the disruption of the Papez circuit (Aggleton et al.,
2016), which is interconnected with multiple limbic regions during AD
progression may explain the significant pattern changes. Therefore, we
speculate that this structural reorganization of the limbic network may
account for the memory deficits observed among cMCI and AD patients.
In addition, the overall reduced connectivity related to the orbitofrontal
cortex in cMCI and AD patients indicates an important role for this
region in AD progression. This observation is largely congruent with
prior studies reporting that orbitofrontal cortex can be damaged con-
spicuously by neurofibrillary tangle (NFT) pathology in prodromal AD
(Tekin et al., 2001; Van Hoesen et al., 2000). Regarding the left tha-
lamus, the right insula, and the left putamen, the occurrence of both
decreased and paradoxically increased connectivity within each nodal
network across diagnostic categories highlights the irregular con-
nectivity patterns developing with AD progression. In contrast, the
aberrantly increased connectivity between the bilateral thalamus pair,

Fig. 3. Post-hoc analysis of connectivity patterns for the seed regions subsequent to multivariate distance matrix regression (MDMR). Nine nodes with significant
differences in connectivity patterns in the three-group comparison were selected for the post-hoc analysis. For each seed region returned by MDMR, the top five
connections with the greatest effect size are represented as axes in the radar chart. ORBsup: orbital part of superior frontal gyrus; ORBmid: orbital part of middle
frontal gyrus; SMA: supplementary motor area; INS: insula; HIP: hippocampus; PUT: putamen; THA: thalamus; L, left; R, right.
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the left putamen and the supplementary motor area pair and the right
insula and the superior parietal cortex pair in patients is difficult to
interpret, and caution is needed to avoid ambiguity regarding the in-
terpretability of these structural connections. Since the magnitude of
structural connectivity strength can be influenced by several physiolo-
gical and methodological factors (Jbabdi and Johansen-Berg, 2011;
Jones et al., 2013), further investigation and validation are required to
verify whether the structural connectivity reflects the underlying white
matter pathway.

The individual classification in cMCI groups based on the con-
nectivity features returned from the MDMR exhibited significantly
better discriminative performance than the full whole-brain con-
nectivity (p= .045 for sensitivity and p= .042 for AUC), suggesting
the power of connectivity features identified by MDMR to characterize
the prodromal AD category. These structural connectivity features and
the corresponding topological alterations found in our study may yield
insights into neural circuit-damaging processes before onset of evident
symptoms. Although the pathological mechanism of AD remains un-
clear, emerging evidence from CWAS studies shift the etiological focus
of AD from a single-target to an integrated outlook, which highlights
the disruption of neural circuits (De Strooper and Karran, 2016) and
network connectivity (Palop and Mucke, 2010). Recent studies suggest
that the progressive aggregation of amyloid-β peptides and tau levels
may be induced by local circuit dysfunction in brain networks, further
contributing to the subsequent abnormal activity of downstream targets
(Busche et al., 2015). As the amyloid plaques and NFT propagate with
the aberrant structural connectivity, brain network reorganization
could explain the cognitive decline. Another important finding of our
study is the fair classification performance (AUC=0.862) achieved on
prodromal patients using supervised learning, which indicates the

promising predictive ability of AD conversion for the individual at risk.
Although the sensitivity is not remarkably high, the identified abnormal
connectivity patterns during disease progression will facilitate potential
interventions to alter disease trajectory or restore memory and cogni-
tion in early AD patients.

The multi-variate analytical approach performed in this study seems
an idea data-driven strategy to localize the pattern changes of an in-
dividual brain region in a brain network associated with disease pro-
gression. The mass-univariate statistical models utilized in brain net-
work studies have suffered from less reproducibility of significantly
disrupted connectivity, increasing the risk of exaggerated scientific re-
sults (Poldrack et al., 2017). Furthermore, the mass-univariate statis-
tical approaches tend to ignore concurrent contributions from all en-
tries within a connectivity matrix (Cole et al., 2010). Therefore, the
multi-variate nature of MDMR allows to overcome the drawbacks above
in CWAS studies. To the best of our knowledge, only one study has
investigated the AD progression in diffusion-tensor brain network
consisting of 20 modules by MDMR (Rasero et al., 2017a). In contrast,
our study explicitly illustrated the anatomical brain structures with
altered connectivity in a finer manner, and evaluated the predictive
performance of the connectivity returned from MDMR.

Several limitations of this study should be noted. First, the optimal
tractography method to sensitively detect AD effects on structural net-
works remains a controversial issue. The two main tractography ap-
proaches (e.g. deterministic and probabilistic) have their own respective
merits; the deterministic approach is advantageous for tracking long fiber
tracts, while the probabilistic approach exhibits more reliable perfor-
mance (Khalsa et al., 2014). A recent study comparing nine different
tractography algorithms to detect network abnormalities caused by AD
also indicated no universally optimal methods (Zhan et al., 2015). In this
study, the probabilistic approach was selected to construct the structural
networks for two reasons: 1) the probabilistic approach has been re-
ported as more effective against fiber-crossing issues (King et al., 2009);
and 2) in the deterministic approach, the structural network derived is
too sparse for MDMR analysis. Second, as discussed above, the biological
interpretability of structural connectivity is challenging. Novel techni-
ques on diffusion MR data, such as pixel-based analysis, offering greater
anatomical specificity, can possibly explain whether the degeneration of
WM tracts in AD patients is mainly due to axonal loss or demyelination
(Mito et al., 2018). Thirdly, while the motivation of this study was to
distinguish structural connectivity abnormalities in cMCI and AD pa-
tients, future work is undoubtedly necessary to probe the association
between network changes and specific clinical manifestations. Finally,
the cross-sectional dataset with a small sample size employed in our
study may bias the MDMR results. Longitudinal investigations on bigger
cohorts will be helpful to validate our connectivity results.

Fig. 4. Comparison of the overall connectivity strength between groups. *, p < .05. **, p < .01. ***, p < .001. ORBsup: orbital part of superior frontal gyrus;
ORBmid: orbital part of middle frontal gyrus; SMA: supplementary motor area; INS: insula; HIP: hippocampus; PUT: putamen; THA: thalamus; L, left; R, right.

Table 3
The classification performance comparison between features from whole-brain
connectivity and key connectivity from three-group MDMR analysis.

Classification
measurements

CN vs. cMCI CN vs. AD

whole-brain
connectivity
features

MDMR
connectivity
features

whole-brain
connectivity
features

MDMR
connectivity
features

Sensitivity 0.547 0.713⁎ 0.719 0.670
Specificity 0.850 0.793 0.701 0.762
Area under

ROC
0.783 0.862⁎ 0.785 0.817

⁎ Classification measurements based on MDMR connectivity features are
significantly higher than those based on the whole-brain connectivity features
(p < .05).
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This study stresses the value of implementing MDMR to investigate the
topological properties of structural networks on an individual basis. While
sMCI patients do not exhibit global connectivity alterations, an extensive
reorganization of structural networks among cMCI and AD patients occurs
in a number of cortico-subcortical regions. The aberrant pattern of struc-
tural connectivity is consistent with circuit dysfunction and functional
connectivity damage reported in previous studies and supports current
theories on brain network disruptions caused by AD. The impaired key
structural connections that we identified demonstrate the promising dis-
tinguishing capability of MDMR to predict prodromal AD patients.
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